分析 (1)將直線l的參數(shù)方程消去參數(shù)t,化為普通方程得$x-\sqrt{3}y+1=0$,圓C的極坐標(biāo)方程化為普通方程可得x2+y2=8,圓心C到直線l的距離d=$\frac{1}{2}$,由此能求出直線l被圓C截得的弦長(zhǎng).
(2)把$\left\{\begin{array}{l}x=-1+\frac{{\sqrt{3}}}{2}t\\ y=\frac{1}{2}t\end{array}\right.$代入x2+y2=8,得${t^2}-\sqrt{3}t-7=0$,由此能出|MA|•|MB|的值.
解答 解:(1)∵直線l的參數(shù)方程為$\left\{\begin{array}{l}x=-1+\frac{{\sqrt{3}}}{2}t\\ y=\frac{1}{2}t\end{array}\right.$(t為參數(shù)),
將直線l的參數(shù)方程消去參數(shù)t,化為普通方程可得$x-\sqrt{3}y+1=0$,
∵圓C的極坐標(biāo)方程為$ρ=2\sqrt{2}$,
∴圓C的極坐標(biāo)方程可化為ρ2=8,化為普通方程可得x2+y2=8,
圓心C到直線l的距離為$d=\frac{1}{{\sqrt{1+3}}}=\frac{1}{2}$,
故直線l被圓C截得的弦長(zhǎng)為$2\sqrt{8-{{({\frac{1}{2}})}^2}}=\sqrt{31}$.
(2)把$\left\{\begin{array}{l}x=-1+\frac{{\sqrt{3}}}{2}t\\ y=\frac{1}{2}t\end{array}\right.$代入x2+y2=8,
得${t^2}-\sqrt{3}t-7=0$.(*)
設(shè)t1,t2是方程(*)的兩個(gè)根,則t1t2=-7,
故|MA|•|MB|=|t1t2|=7.
點(diǎn)評(píng) 本題考查弦長(zhǎng)的求法,考查兩線段的乘積的求法,考查韋達(dá)定理、均值不等式、直角坐標(biāo)方程、極坐標(biāo)方程、參數(shù)方程的互化等基礎(chǔ)知識(shí),考查推理論證能力、運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想、函數(shù)與方程思想,是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ?x,y∈Z,x2+y2≠2015 | B. | ?x,y∈Z,x2+y2≠2015 | ||
C. | ?x,y∈Z,x2+y2=2015 | D. | 不存在x,y∈Z,x2+y2=2015 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{{x}^{2}}{8}$-$\frac{{y}^{2}}{2}$=1 | B. | $\frac{{y}^{2}}{2}$-$\frac{{x}^{2}}{8}$=1 | C. | $\frac{{x}^{2}}{4}$-y2=1 | D. | y2-$\frac{{x}^{2}}{4}$=1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com