17.同時具有下列性質(zhì):“①對任意x∈R,f(x+π)=f(x)恒成立;②圖象關(guān)于點($\frac{π}{12}$,0)中心對稱;③函數(shù)在[-$\frac{π}{6}$,$\frac{π}{3}$]上是增函數(shù)”的函數(shù)可以是(  )
A.f(x)=sin($\frac{x}{2}$+$\frac{π}{6}$)B.f(x)=cos(2x-$\frac{π}{3}$)C.f(x)=cos(2x+$\frac{π}{3}$)D.f(x)=sin(2x-$\frac{π}{6}$)

分析 利用三角函數(shù)的周期性、單調(diào)性、以及圖象的對稱性,逐一判斷各個選項是否正確,從而得出結(jié)論.

解答 解:對于f(x)=sin($\frac{x}{2}$+$\frac{π}{6}$),它的周期為$\frac{2π}{\frac{1}{2}}$=4π,顯然不滿足條件①,故排除A;
對于f(x)=cos(2x-$\frac{π}{3}$),當(dāng)x=$\frac{π}{12}$時,求得f(x)=$\frac{\sqrt{3}}{2}$≠0,顯然不滿足條件②,故排除B;
對于f(x)=cos(2x+$\frac{π}{3}$),當(dāng)x∈[-$\frac{π}{6}$,$\frac{π}{3}$]時,2x+$\frac{π}{3}$∈[0,π],故函數(shù)在[-$\frac{π}{6}$,$\frac{π}{3}$]上是減函數(shù),不滿足條件③,故排除C;
對于f(x)=sin(2x-$\frac{π}{6}$),由于它的周期為$\frac{2π}{2}$=π,滿足條件①;當(dāng)x=$\frac{π}{12}$時,求得f(x)=0,顯然滿足條件②;
當(dāng)x∈[-$\frac{π}{6}$,$\frac{π}{3}$]時,2x-$\frac{π}{6}$∈[-$\frac{π}{2}$,$\frac{π}{2}$],故函數(shù)在[-$\frac{π}{6}$,$\frac{π}{3}$]上是增函數(shù),滿足條件③,
故選:D.

點評 本題主要考查三角函數(shù)的周期性、單調(diào)性、以及圖象的對稱性,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.下列函數(shù)中,最小正周期為π且為奇函數(shù)的是( 。
A.y=sin$\frac{x}{2}$B.y=cos$\frac{x}{2}$C.y=cos2xD.y=sin2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.為了得到函數(shù)y=2sin($\frac{x}{3}$+$\frac{π}{6}$),x∈R的圖象,只需要把函數(shù)y=2sinx,x∈R的圖象上所有的點( 。
A.向左平移$\frac{π}{6}$個單位,再把所得各點的橫坐標(biāo)縮短為原來的$\frac{1}{3}$倍(縱坐標(biāo)不變)
B.向右平移$\frac{π}{6}$個單位,再把所得各點的橫坐標(biāo)縮短為原來的$\frac{1}{3}$倍(縱坐標(biāo)不變)
C.向左平移$\frac{π}{6}$個單位,再把所得各點的橫坐標(biāo)縮短為原來的3倍(縱坐標(biāo)不變)
D.向右平移$\frac{π}{6}$個單位,再把所得各點的橫坐標(biāo)縮短為原來的3倍(縱坐標(biāo)不變)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.(1)設(shè)f(x)=$\left\{\begin{array}{l}{{x}^{2},x∈[0,1)}\\{2-x,x∈[1,2]}\end{array}\right.$,求${∫}_{0}^{2}$f(x)dx的值;
(2)若復(fù)數(shù)z1=a+2i(a∈R),z2=3-4i,且$\frac{{z}_{1}}{{z}_{2}}$為純虛數(shù),求|z1|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知a,b,c∈(0,+∞) 且 a≥b≥c,a+b+c=12,ab+bc+ca=45,則a的最小值為( 。
A.5B.10C.15D.20

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知M是曲線y=lnx+$\frac{1}{2}$x2+(1-a)x上的任一點,若曲線在M點處的切線的傾斜角均不小于$\frac{π}{4}$的銳角,則實數(shù)a的取值范圍是( 。
A.(-∞,2]B.[2,+∞)C.(0,2]D.(-∞,2+$\sqrt{2}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知復(fù)數(shù)z滿足z+$\frac{3}{z}$=0,則|z|=$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知$\frac{tanα}{tanα-1}$=-1,求$\frac{1}{si{n}^{2}α+sinαcosα}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.設(shè)實數(shù)x,y滿足約束條件 $\left\{\begin{array}{l}{4x-y-10≤0}\\{x-2y+8≥0}\end{array}\right.$,若目標(biāo)函數(shù)z=ax+by(a>0,b>0)的x≥0,y≥0最大值為12,則$\frac{2}{a}+\frac{3}$的最小值為( 。
A.$\frac{25}{6}$B.$\frac{8}{3}$C.$\frac{11}{3}$D.4

查看答案和解析>>

同步練習(xí)冊答案