【題目】某單位6個員工借助互聯(lián)網(wǎng)開展工作,每個員工上網(wǎng)的概率都是0.5(相互獨(dú)立).至少3人同時上網(wǎng)的概率為________;至少________人同時上網(wǎng)的概率小于0.3

【答案】; 5.

【解析】

①根據(jù)題意,由對立事件的概率分析可得,“至少3人同時上網(wǎng)”的概率等于1減去“至多2人同時上網(wǎng)”的概率,進(jìn)而計算可得答案.

②由①的方法,從對立事件的角度分析,分別計算“至少4人同時上網(wǎng)”的概率與“至少5人同時上網(wǎng)”的概率,比較可得答案.

解:①根據(jù)題意,可得“至少3人同時上網(wǎng)”與“至多2人同時上網(wǎng)”互為對立事件,

故“至少3人同時上網(wǎng)”的概率等于1減去“至多2人同時上網(wǎng)”的概率,

即“至少3人同時上網(wǎng)”的概率為:

②至少4人同時上網(wǎng)的概率為,

至少5人同時上網(wǎng)的概率為,

因此,至少5人同時上網(wǎng)的概率小于0.3

故答案為:5.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了讓居民了解垃圾分類,養(yǎng)成垃圾分類的習(xí)慣,讓綠色環(huán)保理念深入人心.某市將垃圾分為四類:可回收物,餐廚垃圾,有害垃圾和其他垃圾.某班按此四類由位同學(xué)組成四個宣傳小組,其中可回收物宣傳小組有位同學(xué),其余三個宣傳小組各有位同學(xué).現(xiàn)從這位同學(xué)中選派人到某小區(qū)進(jìn)行宣傳活動,則每個宣傳小組至少選派人的概率為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線的左、右焦點(diǎn)分別為F1、F2,過點(diǎn)F1作圓x2+y2a2的切線交雙曲線右支于點(diǎn)M,若tanF1MF22,又e為雙曲線的離心率,則e2的值為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】袋子AB中裝有若干個均勻的紅球和白球,從A中摸出一個紅球的概率是,從B中摸出一個紅球的概率為p

1)從A中有放回地摸球,每次摸出一個,有3次摸到紅球即停止.求恰好摸5次停止的概率;

2)若A,B兩個袋子中的球數(shù)之比為,將AB中的球裝在一起后,從中摸出一個紅球的概率是,求p的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某城市現(xiàn)有人口總數(shù)為萬人,如果年自然增長率為,試解答下列問題:

1)寫出該城市經(jīng)過年后的人口總數(shù)關(guān)于的函數(shù)關(guān)系式;

2)用程序流程圖表示計算年以后該城市人口總數(shù)的算法;

3)用程序流程圖表示如下算法:計算大約多少年以后該城市人口將達(dá)到萬人.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】廠家在產(chǎn)品出廠前,需對產(chǎn)品做檢驗(yàn).廠家將一批產(chǎn)品發(fā)給商家時,商家按合同規(guī)定也需隨機(jī)抽取一定數(shù)量的產(chǎn)品做檢驗(yàn),以決定是否接收這批產(chǎn)品.

1)若廠家?guī)旆恐械拿考a(chǎn)品合格的概率為0.8,從中任意取出4件進(jìn)行檢驗(yàn),求至少有1件是合格品的概率;

2)若廠家發(fā)給商家20件產(chǎn)品,其中有3件不合格.按合同規(guī)定該商家從中任取2件,都進(jìn)行檢驗(yàn),只有2件都合格時才接收這批產(chǎn)品,否則拒收.求該商家拒收這批產(chǎn)品的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,,,,,,邊上一點(diǎn),這里異于.由引邊的垂線是垂足,再由引邊的垂線是垂足,又由引邊的垂線是垂足.同樣的操作連續(xù)進(jìn)行,得到點(diǎn),,.設(shè),如圖所示.

1)求的值;

2)某同學(xué)對上述已知條件的研究發(fā)現(xiàn)如下結(jié)論:,問該同學(xué)這個結(jié)論是否正確并說明理由;

3)用表示

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)下列關(guān)系式,算出數(shù)列的前4項(xiàng),然后猜想它的通項(xiàng),并用數(shù)學(xué)歸納法證明你的猜想.

1;

2

3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義:如果數(shù)列的任意連續(xù)三項(xiàng)均能構(gòu)成一個三角形的三邊長,則稱三角形數(shù)列,對于三角形數(shù)列,如果函數(shù)使得仍為一個三角形數(shù)列,則稱是數(shù)列保三角形函數(shù),.

1)已知是首項(xiàng)為2,公差為1的等差數(shù)列,若是數(shù)列保三角形函數(shù),求的取值范圍;

2)已知數(shù)列的首項(xiàng)為2010是數(shù)列的前項(xiàng)和,且滿足,證明三角形數(shù)列;

3)根據(jù)保三角形函數(shù)的定義,對函數(shù),和數(shù)列1,提出一個正確的命題,并說明理由.

查看答案和解析>>

同步練習(xí)冊答案