【題目】設函數(shù)f(x)=2sin(2x+ ),將f(x)圖象上每個點的橫坐標縮短為原來的一半之后成為函數(shù)y=g(x),則g(x)的圖象的一條對稱軸方程為(
A.x=
B.x=
C.x=
D.x=

【答案】D
【解析】解:函數(shù)f(x)=2sin(2x+ ),
將f(x)圖象上每個點的橫坐標縮短為原來的一半之后成為
函數(shù)y=g(x)=2sin(4x+ ).
令4x+ =kπ+ ,k∈Z,可解得函數(shù)對稱軸方程為:x= kπ+ ,k∈Z,
當k=0時,x= 是函數(shù)的一條對稱軸.
故選:D.
由條件根據(jù)函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律可得得函數(shù)圖象對應的函數(shù)解析式為y=g(x)=2sin(4x+ ),再利用正弦函數(shù)的圖象的對稱性求得所得函數(shù)圖象的一條對稱軸方程.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】一網(wǎng)站營銷部為統(tǒng)計某市網(wǎng)友2017年12月12日在某網(wǎng)店的網(wǎng)購情況,隨機抽查了該市60名網(wǎng)友在該網(wǎng)店的網(wǎng)購金額情況,如表:

網(wǎng)購金額

(單位:千元)

頻數(shù)

頻率

3

9

15

18

合計

60

若將當日網(wǎng)購金額不小于2千元的網(wǎng)友稱為“網(wǎng)購達人”,網(wǎng)購金額小于2千元的網(wǎng)友稱為“網(wǎng)購探者”,已知“網(wǎng)購達人”與“網(wǎng)購探者”人數(shù)的比例為.

(1)確定,的值,并補全頻率分布直方圖;

(2)試根據(jù)頻率分布直方圖估算這60名網(wǎng)友當日在該網(wǎng)店網(wǎng)購金額的平均數(shù)和中位數(shù);若平均數(shù)和中位數(shù)至少有一個不低于2千元,則該網(wǎng)店當日評為“皇冠店”,試判斷該網(wǎng)店當日能否被評為“皇冠店”.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知二階矩陣M有特征值λ=8及對應的一個特征向量 =[ ],并且矩陣M對應的變換將點(﹣1,2)變換成(﹣2,4).
(1)求矩陣M;
(2)求矩陣M的另一個特征值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】閱讀如下程序框圖,如果輸出i=5,那么在空白矩形框中應填入的語句為(

A.S=2*i﹣2
B.S=2*i﹣1
C.S=2*I
D.S=2*i+4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】執(zhí)行如圖所示的程序框圖,若輸入n=10,則輸出的S=( )

A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(題文)平面內動點到兩定點,距離之比為常數(shù),則動點的軌跡叫做阿波羅尼斯圓.現(xiàn)已知定點、,圓心為,

(1)求滿足上述定義的圓的方程,并指出圓心的坐標和半徑;

(2)若,且經(jīng)過點的直線交圓,兩點,當的面積最大時,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,底面為正方形, 底面, ,過點的平面與棱, 分別交于點, , , 三點均不在棱的端點處). 

(Ⅰ)求證:平面平面;

(Ⅱ)若平面,求的值;

(Ⅲ)直線是否可能與平面平行?證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓經(jīng)過,且橢圓的離心率為.

(1)求橢圓的方程;

(2)設斜率存在的直線與橢圓交于兩點,為坐標原點,,且與圓心為的定圓相切.直線)與圓交于兩點,.面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知 是雙曲線 的右焦點,過點 的一條漸近線的垂線,垂足為 ,線段 相交于點 ,記點 的兩條漸近線的距離之積為 ,若 ,則該雙曲線的離心率是( )
A.
B.2
C. 3
D.4

查看答案和解析>>

同步練習冊答案