精英家教網 > 高中數學 > 題目詳情

定義在上的函數同時滿足以下條件:
上是減函數,在上是增函數;
是偶函數;
處的切線與直線垂直.
(I)求函數的解析式;
(II)設,若存在,使,求實數的取值范圍.

(I);(II)

解析試題分析:(I),由①得:;由②得:;由③得:
解得:;故
(II)由(I)知:;由得:存在,使得有解
;令,即,
,得上單調遞增,在上單調遞減;
;故;所以
考點:導數的幾何意義,利用導數研究函數的性質。
點評:典型題,在給定區(qū)間,導數非負,函數為增函數,導數非正,函數為減函數。涉及“不等式恒成立”問題,往往通過構造函數,轉化成求函數的最值問題,利用導數加以解決。

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知函數
(1)求曲線在點處的切線方程;
(2)直線為曲線的切線,且經過原點,求直線的方程及切點坐標.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數,,其中的導函數.
(1)對滿足的一切的值,都有,求實數的取值范圍;
(2)設,當實數在什么范圍內變化時,函數的圖象與直線只有一個公共點.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數 
(Ⅰ)若曲線y=f(x)在(1,f(1))處的切線與直線x+y+1=0平行,求a的值;
(Ⅱ)若a>0,函數y=f(x)在區(qū)間(a,a 2-3)上存在極值,求a的取值范圍;
(Ⅲ)若a>2,求證:函數y=f(x)在(0,2)上恰有一個零點.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(1)求函數的極值點與極值;
(2)設的導函數,若對于任意,且,恒成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數 
(Ⅰ)若a>0,函數y=f(x)在區(qū)間(a,a 2-3)上存在極值,求a的取值范圍;
(Ⅱ)若a>2,求證:函數y=f(x)在(0,2)上恰有一個零點.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數f(x)=ln x.
(1)若a>0,試判斷f(x)在定義域內的單調性;
(2)若f(x)在[1,e]上的最小值為,求a的值;
(3)若f(x)<x2在(1,+∞)上恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(1)當時,求函數的單調區(qū)間;
(2)任意恒成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知f(x)=(x∈R)在區(qū)間[-1,1]上是增函數.
(1)求實數a的值組成的集合A;
(2)設關于x的方程f(x)=的兩個非零實根為x1、x2.試問:是否存在實數m,使得不等式m2+tm+1≥|x1-x2|對任意a∈A及t∈[-1,1]恒成立?若存在,求m的取值范圍;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案