已知函數(shù)
(1)求曲線在點(diǎn)處的切線方程;
(2)直線為曲線的切線,且經(jīng)過原點(diǎn),求直線的方程及切點(diǎn)坐標(biāo).

(1)切線的方程為;(2)的方程為,切點(diǎn)坐標(biāo)為

解析試題分析:(1)
在點(diǎn)處的切線的斜率
切線的方程為;
(2)設(shè)切點(diǎn)為,則直線的斜率為
直線的方程為:
又直線過點(diǎn),
,
整理,得,

的斜率,直線的方程為,切點(diǎn)坐標(biāo)為
考點(diǎn):導(dǎo)數(shù)的幾何意義,直線方程。
點(diǎn)評(píng):中檔題,本題較為典型,求曲線的切線,要注意兩種情況,一是,已知點(diǎn)為切點(diǎn),在此點(diǎn)的導(dǎo)函數(shù)值,即為切線的斜率;二是給定的點(diǎn)不是切點(diǎn),應(yīng)設(shè)切點(diǎn)坐標(biāo),求切點(diǎn)坐標(biāo),進(jìn)一步確定切線方程。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知處都取得極值.
(Ⅰ) 求,的值;
(Ⅱ)設(shè)函數(shù),若對(duì)任意的,總存在,使得、,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).
(Ⅰ)若曲線在點(diǎn)處與直線相切,求的值.
(Ⅱ)若曲線與直線有兩個(gè)不同的交點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=2x--aln(x+1),a∈R.
(1)若a=-4,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)求y=f(x)的極值點(diǎn)(即函數(shù)取到極值時(shí)點(diǎn)的橫坐標(biāo)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),當(dāng)時(shí),有極大值
(1)求的值;
(2)求函數(shù)的極小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)處取得極值.
(1)求的值;
(2)求的單調(diào)區(qū)間;
(3)若當(dāng)時(shí)恒有成立,求實(shí)數(shù)c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)=
(1)求函數(shù)的單調(diào)區(qū)間
(2)若關(guān)于的不等式對(duì)一切(其中)都成立,求實(shí)數(shù)的取值范圍;
(3)是否存在正實(shí)數(shù),使?若不存在,說明理由;若存在,求取值的范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)處取得極值.
(1)求的值;
(2)求的單調(diào)區(qū)間;
(3)若當(dāng)時(shí)恒有成立,求實(shí)數(shù)c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

定義在上的函數(shù)同時(shí)滿足以下條件:
上是減函數(shù),在上是增函數(shù);
是偶函數(shù);
處的切線與直線垂直.
(I)求函數(shù)的解析式;
(II)設(shè),若存在,使,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案