已知函數(shù) 
(Ⅰ)若a>0,函數(shù)y=f(x)在區(qū)間(a,a 2-3)上存在極值,求a的取值范圍;
(Ⅱ)若a>2,求證:函數(shù)y=f(x)在(0,2)上恰有一個零點.

(Ⅰ) ;
(Ⅱ),函數(shù)y=f(x)在(0,2)上恰有一個零點。

解析試題分析:(Ⅰ)由已知
,解得
 不在(a,a 2-3)內(nèi)
要使函數(shù)y=f(x)在區(qū)間(a,a 2-3)上存在極值,只需
解得      6分
(Ⅱ) 
在(0,2)上恒成立,即函數(shù)數(shù)y=f(x)在(0,2)內(nèi)單調(diào)遞減

函數(shù)y=f(x)在(0,2)上恰有一個零點      12分
考點:本題主要考查應用導數(shù)研究函數(shù)的單調(diào)性、極值及函數(shù)零點問題。
點評:典型題,本題屬于導數(shù)應用中的基本問題,通過研究函數(shù)的單調(diào)性,明確了極值情況。涉及比較大小問題,通過構(gòu)造函數(shù),轉(zhuǎn)化成了研究函數(shù)的單調(diào)性及最值。涉及函數(shù)的零點問題,研究了函數(shù)的單調(diào)性及在區(qū)間端點的函數(shù)值的符號。

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)處取得極值.
(1)求的值;
(2)求的單調(diào)區(qū)間;
(3)若當時恒有成立,求實數(shù)c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù),其中為實數(shù).
(Ⅰ) 若處取得的極值為,求的值;
(Ⅱ)若在區(qū)間上為減函數(shù),且,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù),
(1)若存在極值,求的取值范圍;
(2)若,問是否存在與曲線都相切的直線?若存在,判斷有幾條?并求出公切線方程,若不存在,說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

定義在上的函數(shù)同時滿足以下條件:
上是減函數(shù),在上是增函數(shù);
是偶函數(shù);
處的切線與直線垂直.
(I)求函數(shù)的解析式;
(II)設,若存在,使,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù),其中
(1)若曲線在點處的切線方程為,求函數(shù)的解析式;
(2)討論函數(shù)的單調(diào)區(qū)間;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)
(Ⅰ)當a=﹣2時,求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若g(x)= +1,+∞)上是單調(diào)函數(shù),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

函數(shù);

(1)若處取極值,求的值;
(2)設直線將平面分成Ⅰ,Ⅱ,Ⅲ,Ⅳ四個區(qū)域(不包括邊界),若圖象恰好位于其中一個區(qū)域,試判斷其所在區(qū)域并求出相應的的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù) (R).
(1) 若,求函數(shù)的極值;
(2)是否存在實數(shù)使得函數(shù)在區(qū)間上有兩個零點,若存在,求出的取值范圍;若不存在,說明理由。

查看答案和解析>>

同步練習冊答案