【題目】我國古代名著《九章算術(shù)》中有這樣一段話:“今有金錘,長五尺,斬本一尺,重四斤.斬末一尺,重二斤.”意思是:“現(xiàn)有一根金錘,頭部的1尺,重4斤;尾部的1尺,重2斤;且從頭到尾,每一尺的重量構(gòu)成等差數(shù)列.”則下列說法錯誤的是(
A.該金錘中間一尺重3斤
B.中間三尺的重量和是頭尾兩尺重量和的3倍
C.該金錘的重量為15斤
D.該金錘相鄰兩尺的重量之差的絕對值為0.5斤

【答案】B
【解析】解:由題意可知等差數(shù)列中a1=4,a5=2, 則d= ,

a1+a5=6,
∴S5=15.
∴A正確,B錯誤,C正確,D正確.
故選:B.
由題意可知等差數(shù)列的首項與第5項,再由通項公式求得公差,求得第三項,再求出中間三項的和,逐一核對四個選項得答案.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線l的參數(shù)方程為 為參數(shù)),以坐標原點為極點,以x軸正半軸為極軸建立極坐標系,橢圓C的極坐標方程為 ,且直線l經(jīng)過橢圓C的右焦點F.
(1)求橢圓C的內(nèi)接矩形PMNQ面積的最大值;
(2)若直線l與橢圓C交于A,B兩點,求|FA||FB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,是平行四邊形,已知,,平面平面.

(1)證明:;

(2)若,求平面與平面所成二面角的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知四棱錐P﹣ABCD的底面ABCD是平行四邊形,△PAB與△ABC是等腰三角形,PA⊥平面ABCD,PA=2,AD=2 ,AC⊥BA,點E是線段AB上靠近點B的一個三等分點,點F、G分別在線段PD,PC上.
(Ⅰ)證明:CD⊥AG;
(Ⅱ)若三棱錐E﹣BCF的體積為 ,求 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】心理學(xué)家分析發(fā)現(xiàn)視覺和空間能力與性別有關(guān),某數(shù)學(xué)興趣小組為了驗證這個結(jié)論,從興趣小組中按分層抽樣的方法抽取50名同學(xué)(男30女20),給所有同學(xué)幾何題和代數(shù)題各一題,讓各位同學(xué)自由選擇一道題進行解答.選題情況如下表:(單位:人)

)能否據(jù)此判斷有97.5%的把握認為視覺和空間能力與性別有關(guān)?

)經(jīng)過多次測試后,甲每次解答一道幾何題所用的時間在57分鐘,乙每次解答一道幾何題所用的時間在68分鐘,現(xiàn)甲、乙各解同一道幾何題,求乙比甲先解答完的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)yf(x)的圖象是以原點為圓心、1為半徑的兩段圓弧,如圖所示.則不等式f(x)>f(-x)+x的解集為(  )

A. (0,1]

B. [-1,0)

C.

D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】拋物線C1yx2(p>0)的焦點與雙曲線C2y21的右焦點的連線交C1于第一象限的點M.C1在點M處的切線平行于C2的一條漸近線,則p( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】平面直角坐標系xoy中,橢圓C1 + =1(a>b>0)的離心率為 ,過橢圓右焦點F作兩條相互垂直的弦,當其中一條弦所在直線斜率為0時,兩弦長之和為6.
(1)求橢圓的方程;
(2)A,B是拋物線C2:x2=4y上兩點,且A,B處的切線相互垂直,直線AB與橢圓C1相交于C,D兩點,求弦|CD|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩名射擊運動員分別對一個目標射擊1次,甲射中的概率為,乙射中的概率為,求:

(1)2人中恰有1人射中目標的概率;

(2)2人至少有1人射中目標的概率.

查看答案和解析>>

同步練習冊答案