14.函數(shù)f(x)=log2(-x2+2$\sqrt{2}$)的值域為(-∞,$\frac{3}{2}$].

分析 根據(jù)對數(shù)函數(shù)以及二次函數(shù)的性質(zhì)解答即可.

解答 解:∵0<-x2+2$\sqrt{2}$≤2$\sqrt{2}$,
∴x=0時,f(x)最大,
f(x)最大值=f(0)=${log}_{2}^{2\sqrt{2}}$=$\frac{3}{2}$,
故答案為:(-∞,$\frac{3}{2}$].

點評 本題考查了求對數(shù)函數(shù)的值域,考查對數(shù)函數(shù)以及二次函數(shù)的性質(zhì),是一道基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知數(shù)列{an}中,a1=1,an+1=$\frac{3{a}_{n}}{{a}_{n}+3}$(n∈N*),求數(shù)列{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.下列運算中正確的是( 。
A.$\overrightarrow{OA}$-$\overrightarrow{OB}$=$\overrightarrow{AB}$B.$\overrightarrow{AB}$$-\overrightarrow{CD}$=$\overrightarrow{DB}$C.$\overrightarrow{OA}$-$\overrightarrow{OB}$=$\overrightarrow{BA}$D.$\overrightarrow{AB}$-$\overrightarrow{AB}$=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.若點P為曲線$\left\{{\begin{array}{l}{x=1+cosθ}\\{y=1+sinθ}\end{array}}\right.$(θ為參數(shù))上一點,則點P與坐標原點的最短距離為( 。
A.$\sqrt{2}-1$B.$\sqrt{2}+1$C.$\sqrt{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.在直角坐標系xOy中,以原點O為極點,x軸正半軸為極軸,建立極坐標系,已知曲線C的參數(shù)方程是$\left\{\begin{array}{l}{x=\sqrt{2}(cosθ+sinθ)}\\{y=\sqrt{2}(cosθ-sinθ)}\end{array}\right.$(θ為參數(shù)),曲線C與l的交點的極坐標為(2,$\frac{π}{3}$)和(2,$\frac{π}{6}$),
(1)求直線l的普通方程;
(2)設(shè)P點為曲線C上的任意一點,求P點到直線l的距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若復(fù)數(shù)$\frac{7+bi}{3+4i}({b∈R})$的實部與虛部互為相反數(shù),則b=( 。
A.-1B.1C.-7D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)一組數(shù)據(jù)的平均數(shù)是2.8,方差是3.6,若將這組數(shù)據(jù)中的每一個數(shù)據(jù)都加上10,得到一組新數(shù)據(jù),則所得新數(shù)據(jù)的平均數(shù)和方差分別是( 。
A.12.8  3.6B.2.8  13.6C.12.8  13.6D.13.6  12.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知向量$\overrightarrow a=(-5,6)$,$\overrightarrow b=(10,-12)$,則$\overrightarrow a$與$\overrightarrow b$( 。
A.垂直B.不垂直也不平行C.平行且同向D.平行且反向

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知集合A={0,1,2,3,4,5},B=﹛5,6﹜,C=﹛(x,y)|x∈A,y∈A,x+y∈B﹜,則C中所含元素的個數(shù)為( 。
A.5B.6C.11D.12

查看答案和解析>>

同步練習冊答案