分析 (Ⅰ)設(shè)橢圓E的方程為$\frac{y^2}{a^2}+\frac{x^2}{b^2}=1({a>b>0})$,通過離心率$\frac{c}{a}=\frac{{\sqrt{3}}}{2}$,以及a,b,c的關(guān)系,利用以橢圓E的長軸和短軸為對角線的四邊形的周長為$4\sqrt{5}$,求出a,b,即可得到橢圓E的方程.
(Ⅱ) 求出P(0,m),設(shè)A(x1,kx1+m),B(x2,kx2+m),通過直線與橢圓方程聯(lián)立,利用△>0,推出不等式,k2-m2+4>0.由$\overrightarrow{AP}=3\overrightarrow{PB}$,得到${k^2}=\frac{{4-{m^2}}}{{{m^2}-1}}$,然后求解m2的取值范圍.
解答 解:(Ⅰ)根據(jù)已知設(shè)橢圓E的方程為$\frac{y^2}{a^2}+\frac{x^2}{b^2}=1({a>b>0})$,焦距為2c,由已知得$\frac{c}{a}=\frac{{\sqrt{3}}}{2}$,
∴$c=\frac{{\sqrt{3}}}{2}a,{b^2}={a^2}-{c^2}=\frac{a^2}{4}$.…(3分)
∵以橢圓E的長軸和短軸為對角線的四邊形的周長為$4\sqrt{5}$,∴$4\sqrt{{a^2}+{b^2}}=2\sqrt{5}a=4\sqrt{5}$,
∴a=2,b=1.
∴橢圓E的方程為${x^2}+\frac{y^2}{4}=1$.…(6分)
(Ⅱ) 根據(jù)已知得P(0,m),設(shè)A(x1,kx1+m),B(x2,kx2+m),
由$\left\{\begin{array}{l}y=kx+m\\ 4{x^2}+{y^2}-4=0\end{array}\right.$得(k2+4)x2+2mkx+m2-4=0,
由已知得△=4m2k2-4(k2+4)(m2-4)>0,
即k2-m2+4>0.且${x_1}+{x_2}=\frac{-2km}{{{k^2}+4}},{x_1}{x_2}=\frac{{{m^2}-4}}{{{k^2}+4}}$.…(9分)
由$\overrightarrow{AP}=3\overrightarrow{PB}$得-x1=3x2,即x1=-3x2.
∴$3{({{x_1}+{x_2}})^2}+4{x_1}{x_2}=0$,
∴$\frac{{12{k^2}{m^2}}}{{{{({{k^2}+4})}^2}}}+\frac{{4({{m^2}-4})}}{{{k^2}+4}}=0$,即m2k2+m2-k2-4=0.當(dāng)m2=1時(shí),m2k2+m2-k2-4=0不成立.
∴${k^2}=\frac{{4-{m^2}}}{{{m^2}-1}}$,∵k2-m2+4>0,∴$\frac{{4-{m^2}}}{{{m^2}-1}}-{m^2}+4>0$,即$\frac{{({4-{m^2}}){m^2}}}{{{m^2}-1}}>0$.
∴1<m2<4,
所以m2的取值范圍為(1,4).…(12分)
點(diǎn)評 本題考查橢圓方程的求法,直線與橢圓的位置關(guān)系的綜合應(yīng)用,考查分析問題解決問題的能力,轉(zhuǎn)化思想的應(yīng)用.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2016-2017學(xué)年廣東清遠(yuǎn)三中高二上學(xué)期第一次月考數(shù)學(xué)(理)試卷(解析版) 題型:選擇題
若一個(gè)四棱錐底面為正方形, 頂點(diǎn)在底面的射影為正方形的中心, 且該四棱錐的體積為,當(dāng)其外接球的體積最小時(shí), 它的高為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{6}$ | B. | $\frac{1}{4}$ | C. | $\frac{3}{8}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
營養(yǎng)成分 | 碳水化合物/單位 | 蛋白質(zhì)/單位 | 維生素C/單位 |
午餐 | |||
晚餐 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com