A. | 0個(gè) | B. | 1個(gè) | C. | 2個(gè) | D. | 3個(gè) |
分析 根據(jù)線面平行和線面垂直的判定定理,以及面面垂直的判定定理和性質(zhì)分別進(jìn)行判斷即可.
解答 解:①當(dāng)E為棱CC1上的一中點(diǎn)時(shí),此時(shí)F也為棱AAC1上的一個(gè)中點(diǎn),此時(shí)A1C1∥EF;滿足A1C1∥平面BED1F成立,∴①正確.
②∵B1D⊆平面BED1F,∴不可能存在點(diǎn)E,使得B1D⊥平面BED1F,∴②錯(cuò)誤.
③連結(jié)D1B,則D1B⊥平面A1C1D,而B1D⊆平面BED1F,∴平面A1C1D⊥平面BED1F,成立,∴③正確.
④四棱錐B1-BED1F的體積等于VD1-BB1F+VD1-B1BF,
設(shè)正方體的棱長(zhǎng)為1,
∵無論E,F(xiàn)在何點(diǎn),三角形BB1E的面積為$\frac{1}{2}$×1×1=$\frac{1}{2}$為定值,三棱錐D1-BB1E的高D1C1=1,保持不變.
三角形BB1F的面積為$\frac{1}{2}$×1×1=$\frac{1}{2}$為定值,三棱錐D1-BB1F的高為D1A1=1,保持不變.
∴三棱錐D1-BB1E和三棱錐D1-BB1F體積為定值,
即四棱錐B1-BED1F的體積等于VD1-BB1F+VD1-B1BF為定值,∴④正確.
故正確的命題有:①③④共3個(gè),
故選:D
點(diǎn)評(píng) 本題主要考查空間直線和平面平行或垂直的位置關(guān)系的判斷以及利用分割法求空間幾何體的體積的方法,綜合性較強(qiáng),難度較大
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{12}{13}$ | B. | $\frac{5}{13}$ | C. | -$\frac{5}{13}$ | D. | -$\frac{12}{13}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{3}{2}$ | B. | 3 | C. | $\frac{\sqrt{3}}{2}$ | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{\sqrt{15}}{3}$πm3 | B. | $\frac{32\sqrt{35}}{27}$πm3 | C. | $\frac{32\sqrt{35}}{81}$πm3 | D. | $\frac{128\sqrt{2}}{81}$πm3 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com