【題目】已知f(x)=lnx-x+a+1.
(1)若存在x∈(0,+∞),使得f(x)≥0成立,求a的取值范圍;
(2)求證:在(1)的條件下,當(dāng)x>1時(shí), x2+ax-a>xlnx+成立.
【答案】(1) [0,+∞).(2)見解析.
【解析】試題分析(1) 原題即為存在x>0,使得a≥-lnx+x-1,即該不等式有解,求函數(shù)g(x)=-lnx+x-1的單調(diào)性和最小值即可;(2)原不等式轉(zhuǎn)化為G(x)=x2+ax-xlnx-a->0,研究這個(gè)函數(shù)的單調(diào)性,求得這個(gè)函數(shù)的最值大于等于0即可.
解析:
(1)解:原題即為存在x>0,
使得lnx-x+a+1≥0,
∴a≥-lnx+x-1,
令g(x)=-lnx+x-1,
則g′(x)=-+1=.
令g′(x)=0,解得x=1.
∵當(dāng)0<x<1時(shí),g′(x)<0,g(x)為減函數(shù),
當(dāng)x>1時(shí),g′(x)>0,g(x)為增函數(shù),
∴g(x)min=g(1)=0,a≥g(1)=0.
故a的取值范圍是[0,+∞).
(2)證明 原不等式可化為x2+ax-xlnx-a->0(x>1,a≥0).
令G(x)=x2+ax-xlnx-a-,則G(1)=0.
由(1)可知x-lnx-1>0,
則G′(x)=x+a-lnx-1≥x-lnx-1>0,
∴G(x)在(1,+∞)上單調(diào)遞增,
∴G(x)>G(1)=0成立,
∴x2+ax-xlnx-a->0成立,
即x2+ax-a>xlnx+成立.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為減少汽車尾氣排放,提高空氣質(zhì)量,各地紛紛推出汽車尾號限行措施.為做好此項(xiàng)工作,某市交警支隊(duì)對市區(qū)各交通樞紐進(jìn)行調(diào)查統(tǒng)計(jì),表中列出了某交通路口單位時(shí)間內(nèi)通過的1000輛汽車的車牌尾號記錄:
由于某些數(shù)據(jù)缺失,表中以英文字母作標(biāo)識.請根據(jù)圖表提供的信息計(jì)算:
(Ⅰ)若采用分層抽樣的方法從這1000輛汽車中抽出20輛,了解駕駛員對尾號限行的建議,應(yīng)分別從一、二、三、四組中各抽取多少輛?
(Ⅱ)以頻率代替概率,在此路口隨機(jī)抽取4輛汽車,獎(jiǎng)勵(lì)汽車用品.用表示車尾號在第二組的汽車數(shù)目,求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2015 年 12 月,華中地區(qū)數(shù)城市空氣污染指數(shù)“爆表”,此輪污染為 2015 年以來最嚴(yán)重的污染過程,為了探究車流量與的濃度是否相關(guān),現(xiàn)采集到華中某城市 2015 年 12 月份某星期星期一到星期日某一時(shí)間段車流量與的數(shù)據(jù)如表:
時(shí)間 | 星期一 | 星期二 | 星期三 | 星期四 | 星期五 | 星期六 | 星期日 |
車流量(萬輛) | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
的濃度(微克/立方米) | 28 | 30 | 35 | 41 | 49 | 56 | 62 |
(1)由散點(diǎn)圖知與具有線性相關(guān)關(guān)系,求關(guān)于的線性回歸方程;(提示數(shù)據(jù): )
(2)利用(1)所求的回歸方程,預(yù)測該市車流量為 12 萬輛時(shí)的濃度.
參考公式:回歸直線的方程是,
其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐P-ABC中,D,E,F分別為PC,AC,AB的中點(diǎn).已知PA⊥AC,PA=6,BC=8,DF=5.
求證:(1)直線PA∥平面DEF;
(2)平面BDE⊥平面ABC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=(x-a)(x-b)(其中a>b),若f(x)的圖象如圖所示,則函數(shù)g(x)=ax+b的圖象大致為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x3+ax2+bx-a2-7a在x=1處取得極大值10,則的值為( )
A. - B. -2
C. -2或- D. 2或-
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)是圓上任意一點(diǎn),點(diǎn)與點(diǎn)關(guān)于原點(diǎn)對稱,線段的垂直平分線分別與,交于,兩點(diǎn).
(1)求點(diǎn)的軌跡的方程;
(2)過點(diǎn)的動直線與點(diǎn)的軌跡交于,兩點(diǎn),在軸上是否存在定點(diǎn),使以為直徑的圓恒過這個(gè)點(diǎn)?若存在,求出點(diǎn)的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在正四棱錐中,已知異面直線與所成的角為,給出下面三個(gè)命題:
:若,則此四棱錐的側(cè)面積為;
:若分別為的中點(diǎn),則平面;
:若都在球的表面上,則球的表面積是四邊形面積的倍.
在下列命題中,為真命題的是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)是定義在[-1,1]上的奇函數(shù),在[0,1]上f(x)=2x+ln(x+1)-1.
(1)求函數(shù)f(x)的解析式;并判斷f(x)在[-1,1]上的單調(diào)性(不要求證明);
(2)解不等式f(2x-1)+f(1-x2)≥0.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com