設a=tan135°,b=cos(cos0°),c=(x2+
1
2
0,則a,b,c的大小關系是(  )
A、c>a>b
B、c>b>a
C、a>b>c
D、b>c>a
考點:三角函數(shù)的化簡求值,不等式比較大小
專題:三角函數(shù)的求值,不等式的解法及應用
分析:利用三角函數(shù)的值,判斷a、b、c的范圍,然后判斷大小即可.
解答: 解:a=tan135°=-1,
b=cos(cos0°)=cos1∈(0,1),
c=(x2+
1
2
0=1.
∴a,b,c的大小關系是c>b>a.
故選:B.
點評:本題考查三角函數(shù)的化簡求值,數(shù)值大小比較,考查計算能力.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在下列四個命題中
(1)命題“若p,則q”與命題“若?q,則?p”互為逆否命題;
(2)y=f(x),x∈R,滿足f(x+2)=-f(x),則該函數(shù)是 周期為4的周期函數(shù);
(3)命題p:?x∈[0,1],ex≥1,命題q:?x∈R,x2+x+1<0,則p∨q為真;
(4)若實數(shù)x,y∈[0,1],則滿足x2+y2>1的概率為
π
4

其中錯誤的個數(shù)是(  )
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a=sin(-
54π
7
),b=cos(-
19π
8
),c=tan(-
17π
5
),則a,b,c的大小關系是( 。
A、a>c>b
B、a>b>c
C、c>b>a
D、b>a>c

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)畫出y=2x+2-x的圖象;
(2)畫出y=2x-2-x的圖象.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

對于任意的兩個正整數(shù)m、n,定義運算⊙,當m、n都為偶數(shù)或都為奇數(shù)時,m⊙n=
m+n
2
,當m、n為一奇一偶時,m⊙n=
mn
,設集合A={(a,b)|a⊙b=6,a、b∈N*},則集合A中的元素的個數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)的反函數(shù)g(x)=3-log2(x+1),則f(-3)g(3)=( 。
A、63B、-63
C、64D、-64

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

寫出命題“若m>0,則方程x2+x-m=0有實數(shù)根”的逆命題,判斷其真假,并加以證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,滿足|
BC
|=|
AC
|且(
AB
-3
AC
)⊥
CB
,則角C的大小為( 。
A、
π
3
B、
π
6
C、
3
D、
6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=sin(ωx+φ)的最小正周期大于π的充分不必要條件是( 。
A、ω=1B、ω=2
C、ω<1D、ω>2

查看答案和解析>>

同步練習冊答案