【題目】已知函數(shù).
(Ⅰ)當時,求曲線在點處的切線方程;
(Ⅱ)討論函數(shù)的單調性;
(Ⅲ)對于任意,,都有,求實數(shù)的取值范圍.
【答案】(Ⅰ);(Ⅱ)分類討論,詳見解析;(Ⅲ).
【解析】
(Ⅰ)當時,求出可得切線的斜率,從而得到切線方程.
(Ⅱ)求出后就討論其符號后可得函數(shù)的單調區(qū)間.
(Ⅲ)就、、、 、分類討論后可得的最大值和最小值,從而得到關于的不等式組,其解即為所求的取值范圍.
解:(Ⅰ)當時,因為
所以,.
又因為,
所以曲線在點處的切線方程為.
(Ⅱ)因為,
所以.
令,解得或.
若,當即或時,
故函數(shù)的單調遞增區(qū)間為;
當即時,故函數(shù)的單調遞減區(qū)間為.
若,則,
當且僅當時取等號,故函數(shù)在上是增函數(shù).
若,當即或時,
故函數(shù)的單調遞增區(qū)間為;
當即時,故函數(shù)的單調遞減區(qū)間為.
綜上,時,函數(shù)單調遞增區(qū)間為,單調遞減區(qū)間為;
時,函數(shù)單調遞增區(qū)間為;
時,函數(shù)單調遞增區(qū)間為,單調遞減區(qū)間為.
(Ⅲ) 由題設,只要即可.
令,解得或.
當時,隨變化, 變化情況如下表:
減 | 極小值 | 增 |
由表可知,此時 ,不符合題意.
當時,隨變化, 變化情況如下表:
|
|
| |||||
增 | 極大值 | 減 | 極小值 | 增 |
由表可得,
且,,
因,所以只需,
即 ,解得.
當時,由(Ⅱ)知在為增函數(shù),
此時,符合題意.
當時,
同理只需,即 ,解得.
當時,,,不符合題意.
綜上,實數(shù)的取值范圍是.
科目:高中數(shù)學 來源: 題型:
【題目】一個調查學生記憶力的研究團隊從某中學隨機挑選100名學生進行記憶測試,通過講解100個陌生單詞后,相隔十分鐘進行聽寫測試,間隔時間(分鐘)和答對人數(shù)的統(tǒng)計表格如下:
時間(分鐘) | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 |
答對人數(shù) | 98 | 70 | 52 | 36 | 30 | 20 | 15 | 11 | 5 | 5 |
1.99 | 1.85 | 1.72 | 1.56 | 1.48 | 1.30 | 1.18 | 1.04 | 0.7 | 0.7 |
時間與答對人數(shù)的散點圖如圖:
附:,,,,,對于一組數(shù)據(jù),,……,,其回歸直線的斜率和截距的最小二乘估計分別為:,.請根據(jù)表格數(shù)據(jù)回答下列問題:
(1)根據(jù)散點圖判斷,與,哪個更適宣作為線性回歸類型?(給出判斷即可,不必說明理由)
(2)根據(jù)(1)的判斷結果,建立與的回歸方程;(數(shù)據(jù)保留3位有效數(shù)字)
(3)根據(jù)(2)請估算要想記住的內容,至多間隔多少分鐘重新記憶一遍.(參考數(shù)據(jù):,)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(選修4-4:坐標系與參數(shù)方程)
在直角坐標系中,半圓C的參數(shù)方程為(為參數(shù),),以O為極點,x軸的非負半軸為極軸建立極坐標系.
(Ⅰ)求C的極坐標方程;
(Ⅱ)直線的極坐標方程是,射線OM:與半圓C的交點為O、P,與直線的交點為Q,求線段PQ的長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某班主任對全班50名學生學習積極性和對待班級工作的態(tài)度進行了調查,統(tǒng)計數(shù)據(jù)如下表所示:
積極參加 班級工作 | 不太主動參加 班級工作 | 合計 | |
學習積極性高 | 18 | 7 | 25 |
學習積極性一般 | 6 | 19 | 25 |
合計 | 24 | 26 | 50 |
(1)如果隨機抽查這個班的一名學生,那么抽到積極參加班級工作的學生的概率是多少?抽到不太主動參加班級工作且學習積極性一般的學生的概率是多少?
(2)試運用獨立性檢驗的思想方法能否有99.9%的把握認為學生的學習積極性與對待班級工作的態(tài)度有關系?并說明理由.(參考下表)
P(K2 ≥k) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
k | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式:,其中)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在“挑戰(zhàn)不可能”的電視節(jié)目上,甲、乙、丙三個人組成的解密團隊參加一項解密挑戰(zhàn)活動,規(guī)則是由密碼專家給出題目,然后由個人依次出場解密,每人限定時間是分鐘內,否則派下一個人.個人中只要有一人解密正確,則認為該團隊挑戰(zhàn)成功,否則挑戰(zhàn)失敗.根據(jù)甲以往解密測試情況,抽取了甲次的測試記錄,繪制了如下的頻率分布直方圖.
(1)若甲解密成功所需時間的中位數(shù)為,求、的值,并求出甲在分鐘內解密成功的頻率;
(2)在“挑戰(zhàn)不可能”節(jié)目上由于來自各方及自身的心理壓力,甲,乙,丙解密成功的概率分別為,其中表示第個出場選手解密成功的概率,并且定義為甲抽樣中解密成功的頻率代替,各人是否解密成功相互獨立.
①求該團隊挑戰(zhàn)成功的概率;
②該團隊以從小到大的順序按排甲、乙、丙三個人上場解密,求團隊挑戰(zhàn)成功所需派出的人員數(shù)目的分布列與數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),的最大值為.
(Ⅰ)求實數(shù)的值;
(Ⅱ)當時,討論函數(shù)的單調性;
(Ⅲ)當時,令,是否存在區(qū)間.使得函數(shù)在區(qū)間上的值域為若存在,求實數(shù)的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某工廠的檢驗員為了檢測生產(chǎn)線上生產(chǎn)零件的情況,從產(chǎn)品中隨機抽取了個進行測量,根據(jù)所測量的數(shù)據(jù)畫出頻率分布直方圖如下:
如果:尺寸數(shù)據(jù)在內的零件為合格品,頻率作為概率.
(1)從產(chǎn)品中隨機抽取件,合格品的個數(shù)為,求的分布列與期望:
(2)為了提高產(chǎn)品合格率,現(xiàn)提出,兩種不同的改進方案進行試驗,若按方案進行試驗后,隨機抽取件產(chǎn)品,不合格個數(shù)的期望是:若按方案試驗后,抽取件產(chǎn)品,不合格個數(shù)的期望是,你會選擇哪個改進方案?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】自2017年7月27日上映以來,《戰(zhàn)狼2》的票房一路高歌猛進,并不斷刷新華語電影票房紀錄.繼8月25日官方宣布沖破53億票房之后,根據(jù)外媒Worldwide Box Office給出的2017年周末全球票房最新排名,《戰(zhàn)狼2》以8.151億美元(約54.18億元)的成績成功殺入前五.通過收集并整理了《戰(zhàn)狼2》上映前兩周的票房(單位:億元)數(shù)據(jù),繪制出下面的條形圖.根據(jù)該條形圖,下列結論錯誤的是( )
A.在《戰(zhàn)狼2》上映前兩周中,前四天票房逐日遞增
B.在《戰(zhàn)狼2》上映前兩周中,日票房超過2億元的共有12天
C.在《戰(zhàn)狼2》上映前兩周中,8月5日,8月6日達到了票房的高峰期
D.在《戰(zhàn)狼2》上映前兩周中,前五日的票房平均數(shù)高于后五日的票房平均數(shù)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為建設美麗新農(nóng)村,某村對本村布局重新進行了規(guī)劃,其平面規(guī)劃圖如圖所示,其中平行四邊形區(qū)域為生活區(qū),為橫穿村莊的一條道路,區(qū)域為休閑公園,,,的外接圓直徑為.
(1)求道路的長;
(2)該村準備沿休閑公園的邊界修建柵欄,以防村中的家畜破壞公園中的綠化,試求柵欄總長的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com