19.如圖所示,正四棱柱ABCD-A1B1C1D1的底面邊長(zhǎng)為1,DD1=2,E為DD1的中點(diǎn),M為AC1的中點(diǎn),連結(jié)C1E,CE,AC,AE,ME,CM.
(1)求證:ME⊥平面ACC1;
(2)求點(diǎn)C1到平面AEC的距離.

分析 (1)證明△C1ME≌△CME,得出ME⊥CM,利用EM⊥C1M,根據(jù)直線與平面垂直的判定定理證明ME⊥平面ACC1;
(2)利用等體積,即可求點(diǎn)C1到平面AEC的距離.

解答 (1)證明:∵EC1=EC=EA=$\sqrt{2}$,C1M=AM
∴EM⊥AC1,
∵C1M=CM,EM=EM,EC1=EC,
∴△C1ME≌△CME,
∴∠C1ME=∠CME=90°,
∴ME⊥CM,
∵EM⊥C1M
∴ME⊥平面ACC1;
(2)解:∵AE=CE=AC=$\sqrt{2}$,
∴△ACE是正三角形,
∴S△ACE=$\frac{\sqrt{3}}{2}$,
∵C1E=CE=$\sqrt{2}$,CC1=2,
∴∠C1EC=90°,
∴${S}_{△{C}_{1}EC}$=1,
設(shè)點(diǎn)C1到平面AEC的距離為h.
∵AD⊥平面C1EC,
∴$\frac{1}{3}•1•1=\frac{1}{3}•\frac{\sqrt{3}}{2}•h$,
∴h=$\frac{2\sqrt{3}}{3}$.

點(diǎn)評(píng) 本題考查線面垂直、線線垂直,考查錐體體積的運(yùn)用,考查學(xué)生分析解決問題的能力,正確運(yùn)用線面垂直的判定定理是關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知函數(shù)f(x)=2cos(ωx+$\frac{π}{4}$ω)+1在(0,$\frac{π}{8}$)上是減函數(shù),則ω的最大值為( 。
A.12B.10C.8D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知函數(shù)f(x)=2sin(2x),將函數(shù)y=f(x)的圖象向左平移$\frac{π}{6}$個(gè)單位,再向上平移1個(gè)單位,得到函數(shù)y=g(x)的圖象,區(qū)間[a,b](a,b∈R且a<b)滿足:y=g(x)在[a,b]上至少含有30個(gè)零點(diǎn),在所有滿足上述條件的[a,b]中,則b-a的最小值為(  )
A.$\frac{42π}{3}$B.$\frac{40π}{3}$C.$\frac{43π}{3}$D.$\frac{45π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.在2+$\sqrt{7}$,$\frac{2}{7}$i,0,8+5i,(1-$\sqrt{3}$)i,0.618i這幾個(gè)數(shù)中,純虛數(shù)的個(gè)數(shù)為( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.函數(shù)f(x)=-2x2+3x(0<x≤2)的值域是(  )
A.$[{-2,\frac{9}{8}}]$B.$({-∞,\frac{9}{8}}]$C.$({0,\frac{9}{8}}]$D.$[{\frac{9}{8},+∞})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.如圖程序框圖中,若輸入k的值為11,則輸出A的值為(  )
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.設(shè)點(diǎn)P在曲線y=lnx上,點(diǎn)Q在曲線y=1-$\frac{1}{x}$(x>0)上,點(diǎn)R在直線y=x上,則|PR|+|RQ|的最小值為$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.棱長(zhǎng)為2的正方體ABCD-A1B1C1D1的所有頂點(diǎn)均在球O的球面上,E,F(xiàn),G分別為AB,AD,AA1的中點(diǎn),則平面EFG截球O所得圓的半徑為( 。
A.$\sqrt{2}$B.$\frac{{\sqrt{15}}}{3}$C.$\frac{{2\sqrt{6}}}{3}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為$\left\{\begin{array}{l}x=sinα+cosα\\ y=1+sin2α\end{array}\right.$(α為參數(shù),α∈[0,2π)),以原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為ρsinθ-ρcosθ=2.
(Ⅰ)寫出直線l和曲線C的直角坐標(biāo)方程;
(Ⅱ)求直線l與曲線C交點(diǎn)的直角坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案