【題目】某書店剛剛上市了《中國古代數(shù)學(xué)史》,銷售前該書店擬定了5種單價(jià)進(jìn)行試銷,每本單價(jià)(元)試銷l天,得到如表單價(jià)(元)與銷量(冊)數(shù)據(jù):
單價(jià)(元) | |||||
銷量(冊) |
(1)已知銷量與單價(jià)具有線性相關(guān)關(guān)系,求關(guān)于的線性回歸方程;
(2)若該書每本的成本為元,要使得售賣時(shí)利潤最大,請利用所求的線性相關(guān)關(guān)系確定單價(jià)應(yīng)該定為多少元?(結(jié)果保留到整數(shù))
附:對于一組數(shù)據(jù),,…,,其回歸直線的斜率和截距的最小二乘估計(jì)分別為:,.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題:(1)若,為非零向量且,則;(2)已知向量,,若,則;(3)若,,為單位向量,且,則三角形為等邊三角形;其中正確的個(gè)數(shù)是( )
A.1B.2C.3D.0
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,橢圓E:的離心率為,點(diǎn)A(2,1)是橢圓E上的點(diǎn).
(1)求橢圓E的方程;
(2)過點(diǎn)A作兩條互相垂直的直線l1,l2分別與橢圓E交于B,C兩點(diǎn),己知△ABC的面積為,求直線BC的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l1:x+2y+1=0,l2:-2x+y+2=0,它們相交于點(diǎn)A.
(1)判斷直線l1和l2是否垂直?請給出理由.
(2)求過點(diǎn)A且與直線l3:3x+y+4=0平行的直線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f1(x)=﹣ax2,f2(x)=x3+x2,f(x)=f1(x)+f2(x),設(shè)f(x)的導(dǎo)函數(shù)為f′(x),若不等式f1(x)<f′(x)<f2(x)在區(qū)間(1,+∞)上恒成立,則a的取值范圍為_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】研究發(fā)現(xiàn),在分鐘的一節(jié)課中,注力指標(biāo)與學(xué)生聽課時(shí)間(單位:分鐘)之間的函數(shù)關(guān)系為.
(1)在上課期間的前分鐘內(nèi)(包括第分鐘),求注意力指標(biāo)的最大值;
(2)根據(jù)專家研究,當(dāng)注意力指標(biāo)大于時(shí),學(xué)生的學(xué)習(xí)效果最佳,現(xiàn)有一節(jié)分鐘課,其核心內(nèi)容為連續(xù)的分鐘,問:教師是否能夠安排核心內(nèi)容的時(shí)間段,使得學(xué)生在核心內(nèi)容的這段時(shí)間內(nèi),學(xué)習(xí)效果均在最佳狀態(tài)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若存在集合A、B滿足,,則稱為的一個(gè)二分劃.①設(shè),,判斷是否為的一個(gè)二分劃,說明理由.
②是否能找到的一個(gè)二分劃滿足集合A中不存在三個(gè)成等比數(shù)列的數(shù);集合B中不存在無窮的等比數(shù)列?說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù),,已知函數(shù),的圖象存在唯一的公切線.
(1)求的值;
(2)當(dāng),時(shí),證明:關(guān)于的不等式在上有解.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)為正方形邊上異于點(diǎn)的動點(diǎn),將沿翻折成,使得平面平面,則下列說法中正確的是__________.(填序號)
(1)在平面內(nèi)存在直線與平行;
(2)在平面內(nèi)存在直線與垂直
(3)存在點(diǎn)使得直線平面
(4)平面內(nèi)存在直線與平面平行.
(5)存在點(diǎn)使得直線平面
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com