10.已知p>0,q>0,隨機(jī)變量ξ的分布列如下:
 ξ p q
 P qp
若E(ξ)=$\frac{4}{9}$.則p2+q2=(  )
A.$\frac{4}{9}$B.$\frac{1}{2}$C.$\frac{5}{9}$D.1

分析 由隨機(jī)變量ξ的分布列的性質(zhì)列出方程組,能求出結(jié)果.

解答 解:∵p>0,q>0,E(ξ)=$\frac{4}{9}$.
∴由隨機(jī)變量ξ的分布列的性質(zhì)得:
$\left\{\begin{array}{l}{q+p=1}\\{pq+qp=\frac{4}{9}}\end{array}\right.$,
∴p2+q2=(q+p)2-2pq=1-$\frac{4}{9}$=$\frac{5}{9}$.
故選:C.

點(diǎn)評(píng) 本題考查兩數(shù)的平方和的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意離散型隨機(jī)變量的分布列的性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知$p:|{1-\frac{x-1}{3}}|≤2$;q:x2-4x+4-m2≤0(m>0)若?p是?q的必要非充分條件,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知函數(shù)f(x)=ex-ax在(-∞,0)上是減函數(shù),則實(shí)數(shù)a的取值范圍是[1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.在平行四邊形ABCD中,|$\overrightarrow{AB}$|=8,|$\overrightarrow{AD}$|=6,N為DC的中點(diǎn),$\overrightarrow{BM}$=2$\overrightarrow{MC}$,則$\overrightarrow{AM}$•$\overrightarrow{NM}$=(  )
A.48B.36C.24D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知等比數(shù)列的前三項(xiàng)分別是a-1,a+1,a+4,則數(shù)列{an}的通項(xiàng)公式為( 。
A.an=4×($\frac{3}{2}$)nB.an=4×($\frac{3}{2}$)n-1C.an=4×($\frac{2}{3}$)nD.an=4×($\frac{2}{3}$)n-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.如圖網(wǎng)格紙上的小正方形邊長(zhǎng)為1,粗線是一個(gè)三棱錐的三視圖,則該三棱錐的外接球表面積為( 。
A.48πB.36πC.24πD.12π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.cos1200°=( 。
A.$\frac{1}{2}$B.$-\frac{1}{2}$C.$\frac{{\sqrt{3}}}{2}$D.$-\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.函數(shù)y=$\frac{lnx}{2x}$的最大值為( 。
A.$\frac{1}{2}$e-1B.eC.e2D.$\frac{5}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知焦點(diǎn)為F的拋物線C:y2=2px(p>0))上有一點(diǎn)M(m,2$\sqrt{2}$),以M為圓心、|MF|為半徑的圓被y軸截得的弦長(zhǎng)為2$\sqrt{5}$.
(1)求|MF|;
(2)若傾斜角為$\frac{π}{4}$且經(jīng)過點(diǎn)(2,0)的直線l與拋物線C相交于A、B兩點(diǎn),求證:OA⊥OB.

查看答案和解析>>

同步練習(xí)冊(cè)答案