20.在△ABC中,AB=2,AC=3,$\overrightarrow{BD}$=$\frac{1}{2}$$\overrightarrow{BC}$,則$\overrightarrow{AD}$•$\overrightarrow{BD}$=$\frac{5}{4}$.

分析 根據(jù)向量的加減的幾何意義和向量的模計(jì)算即可.

解答 解:∵AB=2,AC=3,$\overrightarrow{BD}$=$\frac{1}{2}$$\overrightarrow{BC}$,
∴$\overrightarrow{AD}$•$\overrightarrow{BD}$=$\frac{1}{2}$($\overrightarrow{AB}$+$\overrightarrow{AC}$)•$\frac{1}{2}$($\overrightarrow{AC}$-$\overrightarrow{AB}$)=$\frac{1}{4}$(${\overrightarrow{AC}}^{2}$-${\overrightarrow{AB}}^{2}$)=$\frac{1}{4}$(32-22)=$\frac{5}{4}$,
故答案為:$\frac{5}{4}$

點(diǎn)評(píng) 本題考查了向量的加減的幾何意義和向量的模,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1坐標(biāo)原點(diǎn)為點(diǎn)O,有頂點(diǎn)坐標(biāo)為(2,0),離心率e=$\frac{{\sqrt{3}}}{2}$,過(guò)橢圓右焦點(diǎn)傾斜角為30°的直線交橢圓與點(diǎn)A,B兩點(diǎn).
(1)求橢圓的方程.
(2)求三角形OAB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.在平面直角坐標(biāo)系xOy中,已知點(diǎn)A(-1,1),P是動(dòng)點(diǎn),且三角形POA的三邊所在直線的斜率滿足kOP+kOA=kPA.求點(diǎn)P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.如圖,要在山坡上A、B兩處測(cè)量與地面垂直的鐵塔CD的高,由A、B兩處測(cè)得塔頂C的仰角分別為60°和45°,AB長(zhǎng)為40m,斜坡與水平面成30°角,則鐵塔CD的高為$\frac{40\sqrt{3}}{3}$m.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.在某次測(cè)量中得到的A樣本的莖葉圖如圖所示,則該樣本的中位數(shù)、眾數(shù)、極差分別是( 。
A.47,45,56B.46,45,53C.45,47,53D.46,45,56

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.有某單位在2016年的招聘考試中100名競(jìng)聘者的筆試成績(jī),按成績(jī)分組為:第1組[75,80),第2組[80,85),第3組[85,90),第4組[90,95),第5組[95,100]得到的頻率分布直方圖如圖所示.
(1)分別求第3,4,5組的頻率;
(2)若該單位決定在第3,4,5組中用分層抽樣的方法抽取6名競(jìng)聘者進(jìn)入A組面試,求第3,4,5組每組各抽取多少名競(jìng)聘者進(jìn)入該組面試?
(3)在(2)的前提下,該單位決定在這6名競(jìng)聘者中隨機(jī)抽取2名競(jìng)聘者接受總經(jīng)理的面試,求第4組至少有一名競(jìng)聘者被總經(jīng)理面試的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.復(fù)數(shù)$\frac{1+\sqrt{3}i}{\sqrt{3}-i}$的共軛復(fù)數(shù)等于(  )
A.iB.-iC.$\sqrt{3}$+iD.$\sqrt{3}$-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知△ABC的周長(zhǎng)為10,且A(-2,0),B(2,0),則C點(diǎn)的軌跡方程是( 。
A.$\frac{{x}^{2}}{5}$+$\frac{{y}^{2}}{9}$=1(y≠0)B.$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{5}$=1(y≠0)
C.$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{12}$=1(y≠0)D.$\frac{{x}^{2}}{12}$+$\frac{{y}^{2}}{16}$=1(y≠0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015-2016學(xué)年江蘇泰興中學(xué)高二上學(xué)期期末數(shù)學(xué)(文)試卷(解析版) 題型:填空題

過(guò)點(diǎn)作直線交橢圓兩點(diǎn),若點(diǎn)恰為線段的中點(diǎn),則直線的方程為

查看答案和解析>>

同步練習(xí)冊(cè)答案