精英家教網 > 高中數學 > 題目詳情

【題目】如圖,在以為頂點,母線長為的圓錐中,底面圓的直徑長為2是圓所在平面內一點,且是圓的切線,連接交圓于點,連接,.

1)求證:平面平面;

2)若的中點,連接,,當二面角的大小為時,求平面與平面所成銳二面角的余弦值.

【答案】(1)詳見解析;(2).

【解析】

1)由是圓的直徑,與圓切于點,可得,

底面圓,可得,利用線面垂直的判定定理可知,平面,即可推出.中,,可推出,利用線面垂直的判定定理可證平面,從而利用面面垂直的判定定理可證出平面平面.

2)由,,可知為二面角的平面角,

,建立空間直角坐標系,易知,

求得點的坐標如下;,,

,,,

由(1)知為平面的一個法向量,

設平面的法向量為,

,

通過,∴,,

可求出平面的一個法向量為,

.

平面與平面所成銳二面角的余弦值為.

解:(1)是圓的直徑,與圓切于點

底面圓,

平面,.

∵在中,,

,平面,從而平面平面.

(2),為二面角的平面角,

,

如圖建立空間直角坐標系,易知,

,,

,,

由(1)知為平面的一個法向量,

設平面的法向量為

,,

,,∴,

,即

故平面的一個法向量為,

.

平面與平面所成銳二面角的余弦值為.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖,在三棱錐P-ABC中,PA⊥底面ABC,AC⊥BC,H為PC的中點,M為AH中點,PA=AC=2,BC=1.

(Ⅰ)求證:AH⊥平面PBC;

(Ⅱ)求PM與平面AHB成角的正弦值;

(Ⅲ)在線段PB上是否存在點N,使得MN∥平面ABC,若存在,請說明點N的位置,若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某大型工廠有臺大型機器,在個月中,臺機器至多出現次故障,且每臺機器是否出現故障是相互獨立的,出現故障時需名工人進行維修.每臺機器出現故障的概率為.已知名工人每月只有維修臺機器的能力,每臺機器不出現故障或出現故障時有工人維修,就能使該廠獲得萬元的利潤,否則將虧損萬元.該工廠每月需支付給每名維修工人萬元的工資.

(1)若每臺機器在當月不出現故障或出現故障時有工人進行維修,則稱工廠能正常運行.若該廠只有名維修工人,求工廠每月能正常運行的概率;

(2)已知該廠現有名維修工人.

(。┯浽搹S每月獲利為萬元,求的分布列與數學期望;

(ⅱ)以工廠每月獲利的數學期望為決策依據,試問該廠是否應再招聘名維修工人?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐中,底面為菱形,,側棱底面,,點的中點,作,交于點.

1)求證:平面

2)求證:;

3)求二面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】下列說法正確的個數是(

①一組數據的標準差越大,則說明這組數據越集中;

②曲線與曲線的焦距相等;

③在頻率分布直方圖中,估計的中位數左邊和右邊的直方圖的面積相等;

④已知橢圓,過點作直線,當直線斜率為時,M剛好是直線被橢圓截得的弦AB的中點.

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓與雙曲線有公共的焦點,的一條漸近線與以的長軸為直徑的圓相交于兩點,若恰好將線段三等分,則

A.B.C.D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為了研究高中學生對鄉(xiāng)村音樂的態(tài)度(喜歡和不喜歡兩種態(tài)度)與性別的關系,運用2×2列聯(lián)表進行獨立性檢驗,經計算K2=8.01,附表如下:

P(K2≥k0

0.100

0.050

0.025

0.010

0.001

k0

2.706

3.841

5.024

6.635

10.828

參照附表,得到的正確的結論是( 。

A. 有99%以上的把握認為“喜歡鄉(xiāng)村音樂與性別有關”

B. 有99%以上的把握認為“喜歡鄉(xiāng)村音樂與性別無關”

C. 在犯錯誤的概率不超過0.1%的前提下,認為“喜歡鄉(xiāng)村音樂與性別有關”

D. 在犯錯誤的概率不超過0.1%的前提下,認為“喜歡鄉(xiāng)村音樂與性別無關”

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

1)若函數時取得極值,求實數的值;

2)若對任意恒成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】[選修4-4:坐標系與參數方程]

在直角坐標系中,曲線的參數方程為為參數),直線的方程為

(1)以坐標原點為極點,軸的正半軸為極軸建立極坐標系,求曲線的極坐標方程和直線的極坐標方程;

(2)在(1)的條件下,直線的極坐標方程為,設曲線與直線的交于點和點,曲線與直線的交于點和點,求的面積.

查看答案和解析>>

同步練習冊答案