4.已知正項數(shù)列{an},{bn}滿足:a1=3,a2=6,{bn}是等差數(shù)列,且對任意正整數(shù)n,都有bn,$\sqrt{{a}_{n}}$,bn+1成等比數(shù)列.
(1)求數(shù)列{bn}的通項公式;
(2)求Sn=$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+…+$\frac{1}{{a}_{n}}$.

分析 (1)由已知得an=bnbn+1(n∈N*),從而得到數(shù)列{bn}是首項為$\sqrt{2}$,公差為$\frac{\sqrt{2}}{2}$的等差數(shù)列,由此能求出數(shù)列{bn}的通項公式.
(2)由an=bnbn+1=$\frac{(n+1)(n+2)}{2}$,得$\frac{1}{an}$=$\frac{2}{(n+1)(n+2)}$=2($\frac{1}{n+1}$-$\frac{1}{n+2}$),由此利用裂項法能求出Sn

解答 解。1)∵對任意正整數(shù)n,都有bn,$\sqrt{an}$,bn+1成等比數(shù)列,且數(shù)列{an},{bn}均為正項數(shù)列,
∴an=bnbn+1(n∈N*).
∵a1=3,a2=6,∴$\left\{\begin{array}{l}{{a}_{1}=_{1}_{2}=3}\\{{a}_{2}=_{2}_{3}=6}\end{array}\right.$,
又{bn}為等差數(shù)列,即有b1+b3=2b2,
解得b1=$\sqrt{2}$,b2=$\frac{3\sqrt{2}}{2}$,
∴數(shù)列{bn}是首項為$\sqrt{2}$,公差為$\frac{\sqrt{2}}{2}$的等差數(shù)列.
∴數(shù)列{bn}的通項公式為bn=$\frac{\sqrt{2}(n+1)}{2}$(n∈N*).
(2)由(1)得,對任意n∈N*,
an=bnbn+1=$\frac{(n+1)(n+2)}{2}$,
從而有$\frac{1}{an}$=$\frac{2}{(n+1)(n+2)}$=2($\frac{1}{n+1}$-$\frac{1}{n+2}$),
∴Sn=2[($\frac{1}{2}$-$\frac{1}{3}$)+($\frac{1}{3}$-$\frac{1}{4}$)+…+($\frac{1}{n+1}$-$\frac{1}{n+2}$)]
=1-$\frac{2}{n+2}$.

點評 本題考查數(shù)列的通項公式的求法,考查數(shù)列的前n項和的求法,是中檔題,解題時要認(rèn)真審題,注意裂項求和法的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知f(x)=e2x+(1-2t)ex+t2
(1)若g(t)=f(1),討論關(guān)于t的函數(shù)y=g(t)在t∈[0,m](m>0)上的最小值;
(2)若對任意的t∈R,x∈[0,+∞)都有f(x)≥ax+2-cosx,求a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知函數(shù)f(x)=2x+1,則f[f(x)]=4x+3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.若函數(shù)f(x)是冪函數(shù),且滿足$\frac{f(4)}{f(2)}$=3,則f($\frac{1}{2}$)的值為( 。
A.-3B.-$\frac{1}{3}$C.3D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知集合A={x|1≤x≤2},B={x|x2+ax+2≤0} a∈R.
(1)若A=B,求實數(shù)a的取值.
(2)若A⊆B,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.函數(shù)f(x)=$\sqrt{1-(\frac{1}{2})^{x}}+\frac{1}{3-x}$的定義域為( 。
A.(-∞,0)B.(0,+∞)C.(0,3)∪(3,+∞)D.[0,3)∪(3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.函數(shù)f(x)=loga(3x-5)-2的圖象恒過定點P,則點P的坐標(biāo)是(2,-2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.在△ABC中,已知b=$\sqrt{2},c=1,B={45°}$,則a等于( 。
A.$\frac{{\sqrt{6}-\sqrt{2}}}{2}$B.$\frac{{\sqrt{6}+\sqrt{2}}}{2}$C.$\sqrt{2}+1$D.$3-\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.某校書法興趣組有3名男同學(xué)A,B,C和3名女同學(xué)X,Y,Z,其年級情況如下表:
一年級二年級三年級
男同學(xué)ABC
女同學(xué)XYZ
現(xiàn)從這6名同學(xué)中隨機(jī)選出2人參加書法比賽(每人被選到的可能性相同).
(1)用表中字母列舉出所有可能的結(jié)果;
(2)設(shè)M為事件“選出的2人來自不同年級且性別相同”,求事件M發(fā)生的概率.

查看答案和解析>>

同步練習(xí)冊答案