6.設復數(shù)z滿足2z+i=1+$\overline{z}$i,則|z|=( 。
A.$\frac{\sqrt{2}}{3}$B.$\frac{1}{3}$C.-$\frac{\sqrt{2}}{3}$D.$\sqrt{2}$

分析 設z=a+bi,則$\overline{z}$=a-bi,代入關于z的等式,得到關于a,b的方程組,解出即可.

解答 解:設z=a+bi,則$\overline{z}$=a-bi,
∵2z+i=1+$\overline{z}$i,
∴2(a+bi)+i=1+(a-bi)i,
∴2a-b-1+(2b+1-a)i=0,
∴$\left\{\begin{array}{l}{2a-b-1=0}\\{2b+1-a=0}\end{array}\right.$,解得:$\left\{\begin{array}{l}{a=\frac{1}{3}}\\{b=-\frac{1}{3}}\end{array}\right.$,
∴|z|=$\sqrt{{(\frac{1}{3})}^{2}{+(-\frac{1}{3})}^{2}}$=$\frac{\sqrt{2}}{3}$,
故選:A.

點評 本題考查了復數(shù)的運算以及復數(shù)求模問題,是一道基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

16.如圖四棱錐P-ABCD中,底面ABCD為平行四邊形,∠ABC=60°,AD=2,AB=PA=1,且PA⊥平面ABCD.
(1)請判定PB與AC的位置關系,并證明;
(2)求頂點A到平面PCD的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.已知函數(shù)f(x)=sinx+$\sqrt{3}$cosx,當x∈[0,π]時,f(x)≥1的概率為( 。
A.$\frac{1}{3}$B.$\frac{1}{4}$C.$\frac{1}{5}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.某人投籃一次投中的概率是$\frac{1}{3}$,設投籃5次,投中,投不中的次數(shù)分別是ξ,η,則事件“ξ≤η”的概率為( 。
A.$\frac{2}{9}$B.$\frac{64}{81}$C.$\frac{17}{81}$D.$\frac{1}{81}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.一個多面體的直觀圖和三視圖如圖所示,點M是邊AB上的動點,記四面體E-FMC的體積為V1,多面體ADF-BCE的體積為V2,則$\frac{V_1}{V_2}$=( 。
A.$\frac{1}{4}$B.$\frac{1}{3}$
C.$\frac{1}{2}$D.不是定值,隨點M的變化而變化

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.如圖,在四棱錐S-ABCD中,底面ABCD為平行四邊形,側面SBC⊥底面ABCD,點E是SB的中點,∠SBC=45°,SC=SB=2$\sqrt{2}$,△ACD為等邊三角形.
(Ⅰ)求證:SD∥平面ACE;
(Ⅱ)求二面角D-SC-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.P2P金融又叫P2P信貸,是互聯(lián)網金融(1TF1N)的一種,某P2P平臺需要了解該平臺“理財者”的年齡情況,工作人員從該平臺“理財者”中隨機抽取n人進行調查,將調查數(shù)據(jù)整理成如表統(tǒng)計表和如圖頻率分布直方圖.
 組數(shù) 分組 頻數(shù)
 第一組[20,25) 2
 第二組[25,30) a
 第三組[30,35) b
 第四組[35,40) c
 第五組[40,45) d
 第六組[45,50] e
(Ⅰ)求a,b,c,d,e的值;
(Ⅱ)補全頻率分布直方圖;
(Ⅲ)從[20,30)歲年齡段的“理財者”中隨機抽取2人,求這2人都來自于[25,30)歲年齡段的頻率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{x},x∈[0,1)}\\{4-2x,x∈[1,2]}\end{array}\right.$,若x0∈[0,1),且f[f(x0)]∈[0,1),則x0的取值范圍是( 。
A.(log2$\frac{3}{2}$,1)B.(log2$\frac{2}{3}$,1)C.($\frac{2}{3}$,1)D.[0,$\frac{3}{4}$]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.定義在區(qū)間(0,+∞)上的函數(shù)f(x)滿足f(x)>0,且$\frac{2f(x)}{x}$<f′(x)$<\frac{3f(x)}{x}$(其中f′(x)是f(x)的導函數(shù))恒成立,則(  )
A.$\frac{1}{3}$$<\frac{f(2)}{f(4)}$$<\frac{1}{2}$B.$\frac{1}{4}<\frac{f(2)}{f(4)}$$<\frac{1}{3}$C.$\frac{1}{8}$$<\frac{f(2)}{f(4)}$$<\frac{1}{4}$D.$\frac{1}{16}$$<\frac{f(2)}{f(4)}$$<\frac{1}{8}$

查看答案和解析>>

同步練習冊答案