分析 (1)證明AC⊥平面PAB,即可判定PB與AC的位置關(guān)系;
(2)過A作AH⊥PC,垂足為H,則AH⊥平面PCD,利用等面積求頂點(diǎn)A到平面PCD的距離
解答 證明:(1)∵PA⊥平面ABCD,AC?平面ABCD,
∴PA⊥AC;…(2分)
在△ABC中,∠ABC=60°,BC=2,AB=1,
∴AC2=AB2+BC2-2 AB•BC cos60°=1+4-2=3,則AB2+AC2=BC2,
∴AB⊥AC;…(4分)
又PA∩AB=A,∴AC⊥平面PAB,
∵PB?平面PAB,
∴PB⊥AC;…(6分)
(2)由(1)知:AC⊥CD,又PA⊥CD,則CD⊥平面PAC,
∵CD?平面PCD,∴平面PCD⊥平面PAC;…(8分)
過A作AH⊥PC,垂足為H,則AH⊥平面PCD;…(10分)
在Rt△PAC中,AH=$\frac{PA•AC}{PC}$=$\frac{\sqrt{3}}{2}$.
即A到平面PCD的距離為$\frac{\sqrt{3}}{2}$…(12分).
點(diǎn)評(píng) 本題考查線面垂直的判定與性質(zhì),考查A到平面PCD的距離,考查學(xué)生分析解決問題的能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
對服務(wù)好評(píng) | 對服務(wù)不滿意 | 合計(jì) | |
對商品好評(píng) | 80 | 40 | 120 |
對商品不滿意 | 70 | 10 | 80 |
合計(jì) | 150 | 50 | 200 |
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{32π}{3}$ | B. | $\frac{20\sqrt{5}π}{3}$ | C. | 8$\sqrt{6}$π | D. | 36π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | P | B. | Q | C. | P∪Q | D. | P∩Q |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{\sqrt{2}}{3}$ | B. | $\frac{1}{3}$ | C. | -$\frac{\sqrt{2}}{3}$ | D. | $\sqrt{2}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com