14.已知z1=a+bi,z2=c+di(a,b,c,d∈R),若z1+z2為純虛數(shù),則有( 。
A.a-c=0且b-d≠0B.a-c=0且b+d≠0C.a+c=0且b+d≠0D.a+c≠0且b+d=0

分析 求出復(fù)數(shù)的和,利用復(fù)數(shù)是純虛數(shù),實部為0,虛部不為0,判斷選項即可.

解答 解:z1=a+bi,z2=c+di(a,b,c,d∈R),
z1+z2=a+c+(b+d)i,是純虛數(shù),
可得a+c=0且b+d≠0.
故選:C.

點(diǎn)評 本題考查復(fù)數(shù)的基本概念的應(yīng)用,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖,已知△ABC為正三角形,D為AB的中點(diǎn),E在AC上,且AE
=$\frac{1}{4}$AC,現(xiàn)沿DE將△ADE折起,折起過程中點(diǎn)A仍然記作點(diǎn)A,使得平面ADE⊥平面BCED,在折起后的圖形中.
(I)在AC上是否存在點(diǎn)M,使得直線ME∥平面ABD.若存在,求出點(diǎn)M的位置;若不存在,說明理由.
(Ⅱ)求平面ABD與平面ACE所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.復(fù)數(shù)z=(1+i)m2+(5-2i)m+(6-15i);
(1)實數(shù)m取什么數(shù)時,z是實數(shù)
(2)實數(shù)m取什么數(shù)時,z是純虛數(shù)
(3)實數(shù)m取什么數(shù)時,z對應(yīng)點(diǎn)在直線x+y+7=0上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.設(shè)數(shù)列{an}的前n項和Sn滿足Sn=2an-a1,且a1,a3+1,a4成等差數(shù)列,令bn=log2an
(1)求數(shù)列{an}的通項公式;
(2)令cn=anbn,求數(shù)列{cn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.設(shè)函數(shù)f(x)=ax2+ex(a∈R)有且僅有兩個極值點(diǎn)x1,x2(x1<x2),則實數(shù)a的取值范圍是(-∞,-$\frac{e}{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若函數(shù)f(x)=x3-ax2+3x在x∈[1,+∞)上是增函數(shù),則實數(shù)a的取值范圍是( 。
A.(3,+∞)B.(-∞,3)C.(-∞,3]D.(-∞,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=$\frac{1}{2}$x2-ax+(a-1)lnx,a>1.
(1)若a=3,求f(x)的極值;
(2)求f(x)在區(qū)間[1,2]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.直線y=-1與y=tanx的圖象的相鄰兩個交點(diǎn)的距離是(  )
A.$\frac{π}{2}$B.π
C.D.與a的值的大小有關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.某市一個區(qū)的街道是11×11的方格線,灑水車每天從左下角A(0,0)處出發(fā),沿街道開到右上角的B(10,10)處.在每個路口司機(jī)隨機(jī)的選擇行進(jìn)方向,只要保證不繞遠(yuǎn)就行.某天從(9,9)到(10,9)的街道發(fā)生事故無法通行.但司機(jī)出發(fā)時并不知道,則灑水車能照常順利到達(dá)B的概率是$\frac{{C}_{18}^{9}}{{C}_{20}^{10}}$.

查看答案和解析>>

同步練習(xí)冊答案