【題目】在“六一”聯(lián)歡會上設(shè)有一個抽獎游戲.抽獎箱中共有12張紙條,分一等獎、二等獎、三等獎、無獎四種.從中任取一張,不中獎的概率為,中二等獎或三等獎的概率是.

(Ⅰ)求任取一張,中一等獎的概率;

(Ⅱ)若中一等獎或二等獎的概率是,求任取一張,中三等獎的概率.

【答案】(1);(2).

【解析】

設(shè)任取一張,抽得一等獎、二等獎、三等獎、不中獎的事件分別為,,,利用互斥事件以及獨(dú)立事件的概率公式求解即可;Ⅱ結(jié)合,可得,利用即可的結(jié)果.

設(shè)任取一張,抽得一等獎、二等獎、三等獎、不中獎的事件分別為,,,,它們是互斥事件.

由條件可得,,

(Ⅰ)由對立事件的概率公式知

,

所以任取一張,中一等獎的概率為;

(Ⅱ)∵,而

,

,∴

所以任取一張,中三等獎的概率為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列四組函數(shù),表示同一函數(shù)的是(
A.f(x)= ,g(x)=x
B.f(x)=x,g(x)=
C.f(x)= ,g(x)=
D.(x)=|x+1|,g(x)=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,設(shè)函數(shù),

(1)存在,使得上的最大值,求的取值范圍;

(2)對任意恒成立時,的最大值為1,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCD是邊長為3的正方形,DE⊥平面ABCD,AF∥DE,DE=3AF,BE與平面ABCD所成角為60°.
(1)求證:AC⊥平面BDE;
(2)設(shè)點(diǎn)M是線段BD上一個動點(diǎn),試確定點(diǎn)M的位置,使得AM∥平面BEF,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,已知曲線C的參數(shù)方程為 (α為參數(shù)),以直角坐標(biāo)系原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)軸方程為ρcos(θ﹣ )=2
(1)求曲線C的普通方程與直線l的直角坐標(biāo)方程;
(2)設(shè)點(diǎn)P為曲線C上的動點(diǎn),求點(diǎn)P到直線l距離的最大值及其對應(yīng)的點(diǎn)P的直角坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ax2+bx+1(a,b為實(shí)數(shù)),設(shè)

(1)f(-1)=0,且對任意實(shí)數(shù)x均有f(x)0成立,F(x)的表達(dá)式;

(2)(1)的條件下,當(dāng)x[-2,2],g(x)=f(x)-kx是單調(diào)函數(shù),求實(shí)數(shù)k的取值范圍;

(3)設(shè)mn<0,m+n>0,a>0,f(x)滿足f(-x)=f(x),試比較F(m)+F(n)的值與0的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知中心在原點(diǎn),焦點(diǎn)在軸上,離心率為的橢圓過點(diǎn)

1)求橢圓的方程;

2)設(shè)不過原點(diǎn)的直線與該橢圓交于兩點(diǎn),滿足直線的斜率依次成等比數(shù)列,求面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2018年4月23日“世界讀書日”來臨之際,某校為了了解中學(xué)生課外閱讀情況,隨機(jī)抽取了100名學(xué)生,并獲得了他們一周課外閱讀時間(單位:小時)的數(shù)據(jù),整理得到數(shù)據(jù)分組及頻數(shù)分布表.

(Ⅰ)求的值,并作出這些數(shù)據(jù)的頻率分布直方圖;

(Ⅱ)假設(shè)每組數(shù)據(jù)組間是平均分布的,試估計(jì)該組數(shù)據(jù)的平均數(shù);(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);

(Ⅲ)現(xiàn)從第3、4、5組中用分層抽樣的方法抽取6人參加!爸腥A詩詞比賽”,經(jīng)過比賽后從這6人中選拔2人組成該校代表隊(duì),求這2人來自不同組別的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司計(jì)劃投資A、B兩種金融產(chǎn)品,根據(jù)市場調(diào)查與預(yù)測,A產(chǎn)品的利潤與投資量成正比例,其關(guān)系如圖1,B產(chǎn)品的利潤與投資量的算術(shù)平方根成正比例,其關(guān)系如圖2(注:利潤與投資量的單位:萬元).

(1)分別將A、B兩產(chǎn)品的利潤表示為投資量的函數(shù)關(guān)系式;

(2)該公司已有10萬元資金,并全部投入A、B兩種產(chǎn)品中,問:怎樣分配這10萬元投資,才能使公司獲得最大利潤?其最大利潤為多少萬元?

查看答案和解析>>

同步練習(xí)冊答案