17.若函數(shù)y=$\frac{1}{\sqrt{a{x}^{2}-ax+1}}$的定義域R,則實數(shù)a的取值范圍是[0,4).

分析 若函數(shù)y=$\frac{1}{\sqrt{a{x}^{2}-ax+1}}$的定義域R,則ax2-ax+1>0恒成立,則a=0,或$\left\{\begin{array}{l}a>0\\△={a}^{2}-4a<0\end{array}\right.$,解得答案.

解答 解:∵函數(shù)y=$\frac{1}{\sqrt{a{x}^{2}-ax+1}}$的定義域R,
∴ax2-ax+1>0恒成立,
∴a=0,或$\left\{\begin{array}{l}a>0\\△={a}^{2}-4a<0\end{array}\right.$,
解得:a∈[0,4),
故答案為:[0,4)

點(diǎn)評 本題考查的知識點(diǎn)是函數(shù)恒成立問題,本題易忽略a=0的情況,而錯解為(0,4).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.圓C1:x2+y2+2x+2y-2=0與圓C2:x2+y2-4x-2y+1=0( 。
A.外離B.外切C.相交D.內(nèi)切

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.某車間生產(chǎn)一種儀器的固定成本是7500元,每生產(chǎn)一臺該儀器需要增加投入100元,已知總收入滿足函數(shù):H(x)=$\left\{\begin{array}{l}{400x-{x}^{2},(0≤x≤200)}\\{40000,(x>200)}\end{array}\right.$,其中x是儀器的月產(chǎn)量.(利潤=總收入-總成本).
(Ⅰ)將利潤表示為月產(chǎn)量x的函數(shù);
(Ⅱ)當(dāng)月產(chǎn)量為何值時,車間所獲利潤最大?最大利潤是多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知正項數(shù)列{an}滿足a1=1,(n+2)an+12-(n+1)an2+anan+1=0,則an=$\frac{2}{n+1}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.函數(shù)f′(x)是奇函數(shù)f(x)(x∈R)的導(dǎo)函數(shù),f(1)=0,當(dāng)x<0時,xf′(x)+f(x)>0,則使得f(x)<0成立的x的取值范圍是( 。
A.(-∞,-1)∪(0,1)B.(-1,0)∪(1,+∞)C.(-∞,-1)∪(1,+∞)D.(-1,0)∪(0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知:如圖,D、E分別是△ABC邊AB和AC上的點(diǎn),且$\frac{BD}{EC}$=$\frac{AB}{AC}$.求證:$\frac{AE}{AC}$=$\frac{AD}{AB}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知三棱錐A-BCD中,平面ABD⊥平面BCD,BC⊥CD,BC=CD=4,AB=AD=2$\sqrt{3}$,則三棱錐A-BCD的外接球的表面積為36π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.若sin4θ+co4sθ=1,則sinθcosθ的值為0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.設(shè)函數(shù)f(x)=$\overrightarrow{a}$•$\overrightarrow$-$\frac{1}{2}$,其中向量$\overrightarrow{a}$=(cosx,1),$\overrightarrow$=(cosx,$\sqrt{3}$sinxcosx).
(Ⅰ)求函數(shù)f(x)在區(qū)間[0,$\frac{π}{2}$]上的最大值和最小值;
(Ⅱ)若f(α)=$\frac{4}{5}$,f(β)=$\frac{5}{13}$,α,β∈($\frac{π}{6}$,$\frac{π}{2}$),求f(α-β+$\frac{π}{6}$)的值.

查看答案和解析>>

同步練習(xí)冊答案