2.已知:如圖,D、E分別是△ABC邊AB和AC上的點(diǎn),且$\frac{BD}{EC}$=$\frac{AB}{AC}$.求證:$\frac{AE}{AC}$=$\frac{AD}{AB}$

分析 由已知中$\frac{BD}{EC}$=$\frac{AB}{AC}$,根據(jù)比例的性質(zhì)可得$\frac{BD}{AB}=\frac{EC}{AC}$,進(jìn)而$1-\frac{BD}{AB}=1-\frac{EC}{AC}$,整理可得結(jié)論.

解答 證明:∵D、E分別是△ABC邊AB和AC上的點(diǎn),且$\frac{BD}{EC}$=$\frac{AB}{AC}$.
∴$\frac{BD}{AB}=\frac{EC}{AC}$,
∴$1-\frac{BD}{AB}=1-\frac{EC}{AC}$,
∴$\frac{AB-BD}{AB}=\frac{AC-EC}{AC}$,
∴:$\frac{AE}{AC}$=$\frac{AD}{AB}$

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是比例的性質(zhì),等式的基本性質(zhì),難度不大,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.如圖,在正方形ABCD-A′B′C′D′,AB=1,
(1)求異面直線AD′與DC′所成的角;
(2)求證:A′B∥平面ACD′;
(3)求VA-CDD′

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.若函數(shù)f(x)同時(shí)滿足以下三個(gè)性質(zhì):①f(x)的最小正周期為π;②對(duì)任意的x∈R,都有f(x-$\frac{π}{4}$)+f(-x)=0;③f(x)在($\frac{π}{4}$,$\frac{π}{2}$)上是減函數(shù),則f(x)的解析式可能是( 。
A.f(x)=sin2x+cos2xB.f(x)=sin2xC.f(x)=tan(x+$\frac{π}{8}$)D.f(x)=cos2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知sin(α+β)=$\frac{33}{65}$,cosβ=-$\frac{5}{13}$,且0<α<$\frac{π}{2}$,$\frac{π}{2}$<β<π,求sinα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.若函數(shù)y=$\frac{1}{\sqrt{a{x}^{2}-ax+1}}$的定義域R,則實(shí)數(shù)a的取值范圍是[0,4).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.設(shè)S為復(fù)數(shù)集C的非空子集.如果
(1)S含有一個(gè)不等于0的數(shù);
(2)?a,b∈S,a+b,a-b,ab∈S;
(3)?a,b∈S,且b≠0,$\frac{a}$∈S,那么就稱S是一個(gè)數(shù)域.
現(xiàn)有如下命題:
①如果S是一個(gè)數(shù)域,則0,1∈S;
②如果S是一個(gè)數(shù)域,那么S含有無(wú)限多個(gè)數(shù);
③復(fù)數(shù)集是數(shù)域;
④S={a+b$\sqrt{2}$|a,b∈Q,}是數(shù)域;
⑤S={a+bi|a,b∈Z}是數(shù)域.
其中是真命題的有①②③④(寫(xiě)出所有真命題的序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.如圖,在空間四邊形ABCD中,E是線段AB的中點(diǎn).
(1)若CF=2FD,連接EF,CE,AF,BF化簡(jiǎn)下列各式,并在圖中標(biāo)出化簡(jiǎn)得到的向量:
①$\overrightarrow{AC}$+$\overrightarrow{CB}$+$\overrightarrow{BD}$;
②$\overrightarrow{AF}$-$\overrightarrow{BF}$-$\overrightarrow{AC}$;
③$\frac{1}{2}$$\overrightarrow{AB}$+$\overrightarrow{BC}$+$\frac{2}{3}$$\overrightarrow{CD}$;
(2)若F為CD的中點(diǎn),求證:$\overrightarrow{EF}$=$\frac{1}{2}$($\overrightarrow{AD}$+$\overrightarrow{BC}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.(1)以極坐標(biāo)系Ox為極點(diǎn)O為原點(diǎn),極軸Ox為x軸正半軸建立平面直角坐標(biāo)系xOy,并在兩種坐標(biāo)系中取相同的長(zhǎng)度單位,把極坐標(biāo)方程cosθ+ρ2sinθ=1化成直角坐標(biāo)方程.
(2)在直角坐標(biāo)系xOy中,曲線C:$\left\{\begin{array}{l}{x=\sqrt{2}cosθ}\\{y=sinθ}\end{array}\right.$(θ為參數(shù)),過(guò)點(diǎn)P(2,1)的直線與曲線C交于A,B兩點(diǎn).若|PA|•|PB|=$\frac{8}{3}$,求|AB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.比較大。簂og0.23>log0.2π.

查看答案和解析>>

同步練習(xí)冊(cè)答案