【題目】已知橢圓的離心率為,過(guò)橢圓的焦點(diǎn)且垂直于軸的直線被橢圓截得的弦長(zhǎng)為

1)求橢圓的方程;

2)設(shè)點(diǎn)均在橢圓上,點(diǎn)在拋物線上,若的重心為坐標(biāo)原點(diǎn),且的面積為,求點(diǎn)的坐標(biāo).

【答案】1;(2,或

【解析】

1)運(yùn)用離心率公式和垂直于軸的弦長(zhǎng)公式,以及的關(guān)系解方程可得,進(jìn)而得到所求橢圓的方程;

2)設(shè),聯(lián)立橢圓方程,運(yùn)用韋達(dá)定理和中點(diǎn)坐標(biāo)公式、三角形的重心坐標(biāo)公式,可得的坐標(biāo),代入拋物線方程,結(jié)合三角形的面積公式,計(jì)算可得的坐標(biāo).

1)根據(jù)題意得,又因?yàn)?/span>,解得,則,

所以橢圓的方程為:;

2)設(shè),聯(lián)立橢圓方程,可得,

設(shè),,

可得,

,

在拋物線上,可得

,

,

,

可得③,將②代入③整理可得,

解得,相應(yīng)的1

所以,或

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓方程為,左,右焦點(diǎn)分別為,上頂點(diǎn)為A,是面積為4的直角三角形.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)過(guò)作直線與橢圓交于P,Q兩點(diǎn),求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如果方程y|y|1所對(duì)應(yīng)的曲線與函數(shù)yfx)的圖象完全重合,那么對(duì)于函數(shù)yfx)有如下結(jié)論:

①函數(shù)fx)在R上單調(diào)遞減;

yfx)的圖象上的點(diǎn)到坐標(biāo)原點(diǎn)距離的最小值為1

③函數(shù)fx)的值域?yàn)椋ī仭蓿?/span>2];

④函數(shù)Fx)=fx+x有且只有一個(gè)零點(diǎn).

其中正確結(jié)論的序號(hào)是_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形中,,為邊的中點(diǎn),將繞直線翻轉(zhuǎn)成平面),為線段的中點(diǎn),則在翻折過(guò)程中,①與平面垂直的直線必與直線垂直;②線段的長(zhǎng)恒為③異面直線所成角的正切值為④當(dāng)三棱錐的體積最大時(shí),三棱錐外接球的體積是.上面說(shuō)法正確的所有序號(hào)是(

A.①②④B.①③④C.②③D.①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系xOy中,過(guò)點(diǎn)P(1,2)的直線l的參數(shù)方程為為參數(shù)).以原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為

(1)求直線l的普通方程和曲線C的直角坐標(biāo)方程;

(2)若直線l與曲線C相交于M,N兩點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某省的一個(gè)氣象站觀測(cè)點(diǎn)在連續(xù)4天里記錄的AQI指數(shù)M與當(dāng)天的空氣水平可見度y(單位:cm)的情況如下表:

M

900

700

300

100

y

0.5

3.5

6.5

9.5

該省某市201912月份AQI指數(shù)M的頻數(shù)分布表如下:

M

頻數(shù)

3

6

12

6

3

(1)設(shè),若xy之間具有線性關(guān)系,試根據(jù)上述數(shù)據(jù)求出y關(guān)于x的線性回歸方程;

(2)王先生在該市開了一家洗車店,洗車店每天的平均收入與AQI指數(shù)的相關(guān)關(guān)系如下表:

M

日均收入(元)

-2000

-1000

2000

6000

8000

估計(jì)王先生的洗車店201912月份每天的平均收入.

附參考公式:,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,橢圓 的左右焦點(diǎn)分別為的,離心率為;過(guò)拋物線焦點(diǎn)的直線交拋物線于、兩點(diǎn),當(dāng)時(shí), 點(diǎn)在軸上的射影為。連結(jié)并延長(zhǎng)分別交兩點(diǎn),連接 的面積分別記為, ,設(shè).

)求橢圓和拋物線的方程;

)求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示的幾何體中,四邊形是正方形,四邊形是梯形,,且,,平面平面ABC.

1)求證:平面平面;

2)若,,求幾何體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,四邊形是直角梯形,,,底面,,的中點(diǎn).

1)求證:;

2)若二面角的余弦值為,求直線與平面所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案