在△ABC中,內(nèi)角A、B、C所對的邊分別為a、b、c,若c2≤ab且C=
π
3
,又△ABC外接圓面積為2π,則△ABC的面積為
 
考點:三角形的面積公式
專題:計算題,解三角形
分析:利用c2≤ab且C=
π
3
,得到△ABC是等邊三角形,根據(jù)△ABC外接圓面積為2π,可得△ABC外接圓的半徑為
2
,利用正弦定理,求出c,即可求出△ABC的面積.
解答: 解:∵c2≤ab且C=
π
3

∴a2+b2-ab≤ab,
∴(a-b)2≤0,
∴a=b,
∴△ABC是等邊三角形,
∵△ABC外接圓面積為2π,
∴△ABC外接圓的半徑為
2
,
c
sin
π
3
=2
2
,
∴c=
6
,
∴△ABC的面積為
3
4
•6
=
3
3
2

故答案為:
3
3
2
點評:本題考查△ABC的面積,考查正弦定理、余弦定理的運用,考查學生的計算能力,比較基礎.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知首項不為零的數(shù)列{an}中的三項a1,a2,a5依次成等比數(shù)列,且點(an+1,an)在函數(shù)y=
x
1-2x
的圖象上.
(1)證明:數(shù)列{
1
an
}是等差數(shù)列,并求出an;
(2)設bn=anan+1,數(shù)列{bn}的前n項和為Sn,求使Sn
4
17
成立的最大正整數(shù)n的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系xOy中,以原點O為極點,以x軸正半煙為極軸,建立極坐標系,設曲線C參數(shù)方程為
x=a+
2
cosθ
y=
2
sinθ
(a<0,θ為參數(shù)),直線l的極坐標方程為ρcos(θ-
π
4
)=2
2

(1)寫出曲線C的普通方程和直線l的直角坐標方程;
(2)若曲線C上的點到直線l的最大距離是5
2
,求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=1-ax,g(x)=x-
2
x+1
,若?x1∈[1,2],總?x2∈[0,1]使f(x1)=g(x2),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在區(qū)間(0,+∞)上不是增函數(shù)的函數(shù)是( 。
A、y=2-x
B、y=ln(x+1)
C、y=-
2
x
D、y=2x2+x+1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若f(tanx)=sinxcosx,則f(
2
3
)的值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

cosx•cosx=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求值:
(1)2cos
π
2
-tan
π
4
+
3
4
tan2
π
6
-sin
π
6
+cos2
π
6
+sin
2

(2)sin2
π
3
+cos4
2
-tan2
π
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若直線y=kx-k交拋物線y2=4x于A,B兩點,且線段AB中點到y(tǒng)軸的距離為3,則|AB|=( 。
A、12B、10C、8D、6

查看答案和解析>>

同步練習冊答案