(本題滿分15分 )已知函數(shù).
(1)求函數(shù)的最大值;
(2)若,不等式恒成立,求實數(shù)的取值范圍;
(3)若,求證:.
(1)在處取得最大值,且最大值為0.(2). (3)見解析。
【解析】(1)先求出 ,然后求導(dǎo)確定單調(diào)區(qū)間,極值,最值即可.
(2) 本小題轉(zhuǎn)化為在上恒成立,進(jìn)一步轉(zhuǎn)化為,然后構(gòu)造函數(shù),利用導(dǎo)數(shù)研究出h(x)的最大值,再利用基礎(chǔ)不等式可知,從而可知a的取值范圍.
(1),則.…………2分
當(dāng)時,,則在上單調(diào)遞增;
當(dāng)時,,則在上單調(diào)遞減,
所以,在處取得最大值,且最大值為0. ………………………4分
(2)由條件得在上恒成立. ………………………6分
設(shè),則.
當(dāng)時,;當(dāng)時,,所以,.
要使恒成立,必須. ………………………8分
另一方面,當(dāng)時,,要使恒成立,必須.
所以,滿足條件的的取值范圍是. ………………………10分
(3)當(dāng)時,不等式等價于.……12
令,設(shè),則,
在上單調(diào)遞增,,
所以,原不等式成立. ………………15分
科目:高中數(shù)學(xué) 來源:2010-2011年江蘇省如皋市五校高二下學(xué)期期中考試?yán)砜茢?shù)學(xué) 題型:解答題
((本題滿分15分)
某有獎銷售將商品的售價提高120元后允許顧客有3次抽獎的機(jī)會,每次抽獎的方法是在已經(jīng)設(shè)置并打開了程序的電腦上按“Enter”鍵,電腦將隨機(jī)產(chǎn)生一個 1~6的整數(shù)數(shù)作為號碼,若該號碼是3的倍數(shù)則顧客獲獎,每次中獎的獎金為100元,運用所學(xué)的知識說明這樣的活動對商家是否有利。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年浙江省招生適應(yīng)性考試文科數(shù)學(xué)試卷(解析版) 題型:解答題
(本題滿分15分)設(shè)函數(shù).
(Ⅰ)若函數(shù)在上單調(diào)遞增,在上單調(diào)遞減,求實數(shù)的最大值;
(Ⅱ)若對任意的,都成立,求實數(shù)的取值范圍.
注:為自然對數(shù)的底數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年浙江省溫州市十校聯(lián)合體高三上學(xué)期期初摸底文科數(shù)學(xué) 題型:解答題
(本題滿分15分)已知直線與曲線相切
1)求b的值;
2)若方程在上恰有兩個不等的實數(shù)根,求
①m的取值范圍;
②比較的大小
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年浙江省溫州市十校聯(lián)合體高三上學(xué)期期中考試文科數(shù)學(xué) 題型:解答題
(本題滿分15分)已知拋物線:(),焦點為,直線交拋物線于、兩點,是線段的中點,
過作軸的垂線交拋物線于點,
(1)若拋物線上有一點到焦點的距離為,求此時的值;
(2)是否存在實數(shù),使是以為直角頂點的直角三角形?若存在,求出的值;若不存在,說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年浙江省六校高三第一次聯(lián)考文科數(shù)學(xué) 題型:解答題
(本題滿分15分)
已知函數(shù)
(1)求的單調(diào)區(qū)間;
(2)設(shè),若在上不單調(diào)且僅在處取得最大值,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com