8.將一些正整數(shù)按如下規(guī)律排列,則10行第3個(gè)數(shù)為532
第1行 1  2
第2行  2   4    6    8
第3行 4   7    10   13
第4行 8   12   16   20   24

分析 :由題意,10行第3個(gè)數(shù)為29=512,公差為10,即可得出結(jié)論.

解答 解:由題意,10行第3個(gè)數(shù)為29=512,公差為10,∴10行第3個(gè)數(shù)為532.
故答案為532.

點(diǎn)評(píng) 本題借助于一個(gè)三角形數(shù)陣考查等差數(shù)列的應(yīng)用,屬基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知y=f(x)是R上的奇函數(shù),f(-1)=-1,且對(duì)任意x∈(-∞,0),f(x)=$\frac{1}{x}$f($\frac{x}{x-1}$)都成立.
(1)求f(-$\frac{1}{2}$)、f(-$\frac{1}{3}$)的值;
(2)設(shè)an=f($\frac{1}{n}$)(n∈N*),求數(shù)列{an}的遞推公式和通項(xiàng)公式;
(3)記Tn=a1an+a2an-1+a3an-2+…+ana1,求$\underset{lim}{n→∞}$$\frac{{T}_{n+1}}{{T}_{n}}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知集合A={x|x2≤4},$B=\left\{{\left.x\right|\frac{x-1}{x-2}≤0}\right\}$,則A∩B( 。
A.[-2,2)B.[1,2)C.(-2,1]D.(1,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.定義在R上的奇函數(shù)y=f(x)為減函數(shù),若m,n滿足f(m2-2m)+f(2n-n2)≤0,則當(dāng)1≤n≤$\frac{3}{2}$時(shí),$\frac{m}{n}$的取值范圍為(  )
A.[-$\frac{2}{3}$,1]B.[1,$\frac{3}{2}$]C.[$\frac{1}{3}$,$\frac{3}{2}$]D.[$\frac{1}{3}$,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.將函數(shù)y=3sin(2x+$\frac{π}{3}$)的圖象向左平移$\frac{π}{4}$個(gè)單位,所得圖象對(duì)應(yīng)的函數(shù)( 。
A.在區(qū)間[$\frac{π}{12}$,$\frac{7π}{12}$]上單調(diào)遞增B.在區(qū)間[$\frac{π}{12}$,$\frac{7π}{12}$]上單調(diào)遞減
C.在區(qū)間[-$\frac{π}{6}$,$\frac{π}{3}$]上單調(diào)遞增D.在區(qū)間[-$\frac{π}{6}$,$\frac{π}{3}$]上單調(diào)遞減

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.2017是等差數(shù)列4,7,10,13,…的第幾項(xiàng)(  )
A.669B.670C.671D.672

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.在三棱柱ABC-A1B1C1中,已知$AB=AC=A{A_1}=\sqrt{5},BC=4$,點(diǎn)A1在底面ABC的投影是線段BC的中點(diǎn)O.
(1)證明:在側(cè)棱AA1上存在一點(diǎn)E,使得OE⊥平面BB1C1C,并求出AE的長;
(2)求三棱柱ABC-A1B1C的側(cè)面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.為把中國武漢大學(xué)辦成開放式大學(xué),今年櫻花節(jié)武漢大學(xué)在其屬下的藝術(shù)學(xué)院和文學(xué)院分別招募8名和12名志愿者從事兼職導(dǎo)游工作,將這20志愿者的身高編成如下莖葉圖(單位:厘米)若身高在175cm及其以上定義為“高個(gè)子”,否則定義為“非高個(gè)子”且只有文學(xué)院的“高個(gè)子”才能擔(dān)任兼職導(dǎo)游.
(1)根據(jù)志愿者的身高莖葉圖指出文學(xué)院志愿者身高的中位數(shù)
(2)如果用分層抽樣的方法從“高個(gè)子”和“非高個(gè)子”中抽取5人,再從這5人中選2人,那么至少有一人是“高個(gè)子”的概率是多少
(3)若從所有“高個(gè)子”中選3名志愿者.用ζ表示所選志愿者中能擔(dān)任“兼職導(dǎo)游”的人數(shù),試寫出ζ的分布列,并求ζ的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知兩條不重合的直線m,n和兩個(gè)不同的平面α,β,若m⊥α,n?β,則下列四個(gè)命題:
①若α∥β,則m⊥n;
②若m⊥n,則α∥β;
③若m∥n,則α⊥β;
④若α⊥β,則m∥n;
其中正確的命題個(gè)數(shù)為( 。
A.0B.1C.2D.3

查看答案和解析>>

同步練習(xí)冊(cè)答案