【題目】(1)已知實(shí)數(shù),,,則的最小值是______.
(2)正項(xiàng)等比數(shù)列中,存在兩項(xiàng)使得,且,則的最小值為______.
(3)設(shè)正實(shí)數(shù)滿足,則的最小值為_______.
【答案】. 6. .
【解析】
(1),利用均值不等式“1”的代換方法求解即可;
(2)由正項(xiàng)等比數(shù)列及,可得,代入中可得,則利用求最值即可;
(3)由可得,則,利用均值不等式求最值即可
(1)由題,,
則
所以,當(dāng)且僅當(dāng),即,時(shí)取等,則的最小值為;
(2)因?yàn)檎?xiàng)等比數(shù)列,所以,即,所以或(舍),
因?yàn)?/span>,則,即,則,所以,則
當(dāng)且僅當(dāng),即,時(shí)取等,故的最小值為;
(3)因?yàn)?/span>,所以,因?yàn)檎龑?shí)數(shù),所以,即,
所以
,當(dāng)且僅當(dāng),即時(shí)取等,故的最小值為
故答案為:(1);(2)6;(3)
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合 .對于,定義與之間的距離為.
(Ⅰ),寫出所有的;
(Ⅱ)任取固定的元素,計(jì)算集合中元素個(gè)數(shù);
(Ⅲ)設(shè),中有個(gè)元素,記中所有不同元素間的距離的最小值為.證明: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)若,函數(shù)在區(qū)間上恰有兩個(gè)零點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近年空氣質(zhì)量逐步惡化,霧霾天氣現(xiàn)象出現(xiàn)增多,大氣污染危害加重.大氣污染可引起心悸、呼吸困難等心肺疾。疄榱私饽呈行姆渭膊∈欠衽c性別有關(guān),在某醫(yī)院隨機(jī)的對入院50人進(jìn)行了問卷調(diào)查得到了如下的列聯(lián)表:
患心肺疾病 | 不患心肺疾病 | 合計(jì) | |
男 | 5 | ||
女 | 10 | ||
合計(jì) | 50 |
已知在全部50人中隨機(jī)抽取1人,抽到患心肺疾病的人的概率為 .
(1)請將上面的列聯(lián)表補(bǔ)充完整;
(2)是否有99.5%的把握認(rèn)為患心肺疾病與性別有關(guān)?說明你的理由;
下面的臨界值表供參考:
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式 其中)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)已知是定義在上的奇函數(shù),求實(shí)數(shù)、的值;
(2)已知是定義在上的函數(shù),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓的左、右頂點(diǎn)分別為,,上頂點(diǎn)為B,右焦點(diǎn)為F,已知直線的傾斜角為120°,.
(1)求橢圓C的方程;
(2)設(shè)P為橢圓C上不同于,的一點(diǎn),O為坐標(biāo)原點(diǎn),線段的垂直平分線交于M點(diǎn),過M且垂直于的直線交y軸于Q點(diǎn),若,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某高中高一,高二,高三的模聯(lián)社團(tuán)的人數(shù)分別為35,28,21,現(xiàn)采用分層抽樣的方法從中抽取部分學(xué)生參加模聯(lián)會議,已知在高二年級和高三年級中共抽取7名同學(xué).
(Ⅰ)應(yīng)從高一年級選出參加會議的學(xué)生多少名?
(Ⅱ)設(shè)高二,高三年級抽出的7名同學(xué)分別用表示,現(xiàn)從中隨機(jī)抽取名同學(xué)承擔(dān)文件翻譯工作.
(i)試用所給字母列舉出所有可能的抽取結(jié)果;
(ii)設(shè)為事件“抽取的兩名同學(xué)來自同一年級”,求事件發(fā)生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知p:2x2﹣3x+1≤0,q:x2﹣(2a+1)x+a(a+1)≤0
(1)若a=,且p∧q為真,求實(shí)數(shù)x的取值范圍.
(2)若p是q的充分不必要條件,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com