【題目】己知數列,首項,設該數列的前項的和為,且
(1)求數列的通項公式;
(2)若數列滿足,求數列的通項公式;
(3)在第(2)小題的條件下,令,是數列的前項和,若對,恒成立,求的取值范圍.
科目:高中數學 來源: 題型:
【題目】為了解人們對于國家新頒布的“生育二胎放開”政策的熱度,現在某市進行調查,隨機調查了人,他們年齡的頻數分布及支持“生育二胎”人數如下表:
年齡 | [5,15) | [15,25) | [25,35) | [35,45) | [45,55) | [55,65) |
頻數 | 5 | 10 | 15 | 10 | 5 | 5 |
支持“生 育二胎” | 4 | 5 | 12 | 8 | 2 | 1 |
(1)由以上統(tǒng)計數據填下面2乘2列聯表,并問是否有99的把握認為以45歲為分界點對“生育二胎放開”政策的支持度有差異:
年齡不低于45歲的人數 | 年齡低于45歲的人數 | 合計 | |
支持 | a= | c= | |
不支持 | b= | d= | |
合計 |
(2)若對年齡在的被調查人中隨機選取兩人進行調查,恰好這兩人都支持“生育二胎放開”的概率是多少?
參考數據:P
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,點在橢圓 上,過點的直線的方程為.
(Ⅰ)求橢圓的離心率;
(Ⅱ)若直線與軸、軸分別相交于兩點,試求面積的最小值;
(Ⅲ)設橢圓的左、右焦點分別為,,點與點關于直線對稱,求證:點三點共線.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】教材中指出:當很小,不太大時,可以用表示的近似值,即 (1),我們把近似值與實際值之差除以實際值的商的絕對值稱為“相對近似誤差”,一般用字母表示,即相對近似誤差
(1)利用(1)求出的近似值,并指出其相對近似誤差(相對近似誤差保留兩位有效數字)
(2)若利用(1)式計算的近似值產生的相對近似誤差不超過,求正實數的取值范圍;
(3)若利用(1)式計算的近似值產生的相對近似誤差不超過,求正整數的最大值。(參考對數數值:)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知為坐標原點,橢圓:的左、右焦點分別為,.過焦點且垂直于軸的直線與橢圓相交所得的弦長為3,直線與橢圓相切.
(1)求橢圓的標準方程;
(2)是否存在直線:與橢圓相交于兩點,使得?若存在,求的取值范圍;若不存在,請說明理由!
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com