14.如圖,已知等腰梯形ABCD為⊙O的內(nèi)接四邊形,AB∥CD,PA=AB=2CD=2,PA⊥平面ABCD,已知E為PA的中點(diǎn),連接DE.
(1)證明:DE∥平面PBC;
(2)求二面角D-BC-P的正弦值.

分析 (1)連結(jié)DO,EO,推導(dǎo)出AB∥CD,四邊形BCDO為平行四邊形,從而DO∥BC,進(jìn)而平面DEO∥平面PBC,由此能證明DE∥平面PBC.
(2)以D為原點(diǎn),DA為x軸,DB為y軸,過(guò)D作平面ABCD的垂線(xiàn)為z軸,建立空間直角坐標(biāo)系,利用向量法能求出二面角D-BC-P的正弦值.

解答 證明:(1)連結(jié)DO,EO,
∵等腰梯形ABCD為⊙O的內(nèi)接四邊形,AB∥CD,PA=AB=2CD=2,
E為PA的中點(diǎn),連接DE.
∴OE∥PB,DC$\underset{∥}{=}$OB,∴四邊形BCDO為平行四邊形,∴DO∥BC,
∵EO∩DO=O,PB∩BC=B,EO、DO?平面DEO,
PB、BC?平面PBC,
∴平面DEO∥平面PBC,
∵DE?平面DEO,∴DE∥平面PBC.
解:(2)以D為原點(diǎn),DA為x軸,DB為y軸,過(guò)D作平面ABCD的垂線(xiàn)為z軸,建立空間直角坐標(biāo)系,
則P(1,0,2),B(0,$\sqrt{3}$,0),C(-$\frac{1}{2}$,$\frac{\sqrt{3}}{2}$,0),
$\overrightarrow{PB}$=(-1,$\sqrt{3}$,-2),$\overrightarrow{PC}$=(-$\frac{3}{2}$,$\frac{\sqrt{3}}{2}$,-2),
設(shè)平面PBC的法向量$\overrightarrow{n}$=(x,y,z),
則$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{PB}=-x+\sqrt{3}y-2z=0}\\{\overrightarrow{n}•\overrightarrow{PC}=-\frac{3}{2}x+\frac{\sqrt{3}}{2}y-2z=0}\end{array}\right.$,取y=$\sqrt{3}$,得$\overrightarrow{n}$=(-3,$\sqrt{3}$,3),
平面BDC的法向量$\overrightarrow{m}$=(0,0,1),
設(shè)二面角D-BC-P的平面角為θ,
則cosθ=$\frac{|\overrightarrow{m}•\overrightarrow{n}|}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=$\frac{3}{\sqrt{21}}$=$\frac{\sqrt{21}}{7}$.
sinθ=$\sqrt{1-(\frac{\sqrt{21}}{7})^{2}}$=$\frac{2\sqrt{7}}{7}$.
∴二面角D-BC-P的正弦值為$\frac{2\sqrt{7}}{7}$.

點(diǎn)評(píng) 本題考查線(xiàn)面平行的證明,考查二面角的正弦值的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意向量法的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知直線(xiàn)y=x+a與曲線(xiàn)y=ln(x+2)相切,則a=(  )
A.-1B.-2C.0D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.國(guó)內(nèi)某知名大學(xué)有男生14000人,女生10000人.該校體育學(xué)院想了解本校學(xué)生的運(yùn)動(dòng)狀況,根據(jù)性別采取分層抽樣的方法從全校學(xué)生中抽取120人,統(tǒng)計(jì)他們平均每天運(yùn)動(dòng)的時(shí)間,如表:(平均每天運(yùn)動(dòng)的時(shí)間單位:小時(shí),該校學(xué)生平均每天運(yùn)動(dòng)的時(shí)間范圍是[0,3])
男生平均每天運(yùn)動(dòng)的時(shí)間分布情況:
平均每天運(yùn)動(dòng)的時(shí)間[0,0.5)[0.5,1)[1,1.5)[1.5,2)[2,2.5)[2.5,3]
人數(shù)212231810x
女生平均每天運(yùn)動(dòng)的時(shí)間分布情況:
平均每天運(yùn)動(dòng)的時(shí)間[0,0.5)[0.5,1)[1,1.5)[1.5,2)[2,2.5)[2.5,3]
人數(shù)51218103y
(Ⅰ)請(qǐng)根據(jù)樣本估算該校男生平均每天運(yùn)動(dòng)的時(shí)間(結(jié)果精確到0.1);
(Ⅱ)若規(guī)定平均每天運(yùn)動(dòng)的時(shí)間不少于2小時(shí)的學(xué)生為“運(yùn)動(dòng)達(dá)人”,低于2小時(shí)的學(xué)生為“非運(yùn)動(dòng)達(dá)人”.
①請(qǐng)根據(jù)樣本估算該!斑\(yùn)動(dòng)達(dá)人”的數(shù)量;
②請(qǐng)根據(jù)上述表格中的統(tǒng)計(jì)數(shù)據(jù)填寫(xiě)下面2×2列聯(lián)表,并通過(guò)計(jì)算判斷能否在犯錯(cuò)誤的概率不超過(guò)0.05的前提下認(rèn)為“是否為‘運(yùn)動(dòng)達(dá)人’與性別有關(guān)?”
運(yùn)動(dòng)達(dá)人非運(yùn)動(dòng)達(dá)人總  計(jì)
男  生
女  生
總  計(jì)
參考公式:${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$,其中n=a+b+c+d.
參考數(shù)據(jù):
P(K2≥k00.100.050.0250.0100.0050.001
k02.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知函數(shù)f(x)=(2a+1)x-aln(x-1)-b.
(1)討論f(x)的單調(diào)性;
(2)若g(x)=f(x+1),當(dāng)a=1時(shí),g(x)在區(qū)間($\frac{1}{{e}^{2}}$,e)上恰有一個(gè)零點(diǎn),求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.在直角坐標(biāo)系xOy中,以O(shè)為極點(diǎn),x軸正半軸為極軸建立直角坐標(biāo)系,曲線(xiàn)C1的參數(shù)方程為$\left\{\begin{array}{l}x=2cosα+\sqrt{3}\\ y=2sinα+1\end{array}$(α為參數(shù)),曲線(xiàn)C2的極坐標(biāo)方程為ρ=2cosθ.
(Ⅰ)求曲線(xiàn)C1的極坐標(biāo)方程;
(Ⅱ)若射線(xiàn)θ=$\frac{π}{6}$(ρ≥0)交曲線(xiàn)C1和C2于A、B(A、B異于原點(diǎn)),求|AB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知圓E的極坐標(biāo)方程為ρ=4sinθ,以極點(diǎn)為原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,取相同單位長(zhǎng)度(其中ρ≥0,θ∈[0,2π)).
(1)直線(xiàn)l過(guò)原點(diǎn),且它的傾斜角α=$\frac{3π}{4}$,求l與圓E的交點(diǎn)A的極坐標(biāo)(點(diǎn)A不是坐標(biāo)原點(diǎn));
(2)直線(xiàn)m過(guò)線(xiàn)段OA中點(diǎn)M,且直線(xiàn)m交圓E于B、C兩點(diǎn),求|MB|•|MC|為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.扇形OAB中,∠AOB=90°,OA=2,其中C是OA的中點(diǎn),P是$\widehat{AB}$上的動(dòng)點(diǎn)(含端點(diǎn)),若實(shí)數(shù)λ,μ滿(mǎn)足$\overrightarrow{OP}$=λ$\overrightarrow{OC}$+μ$\overrightarrow{OB}$,則λ+μ的取值范圍是(  )
A.[1,$\sqrt{2}$]B.[1,$\sqrt{3}$]C.[1,2]D.[1,$\sqrt{5}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.設(shè)復(fù)數(shù)z滿(mǎn)足z•(2+i)=10-5i,(i為虛數(shù)單位),則z的模為5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知數(shù)列{an}是等差數(shù)列a1=1,a5=13,設(shè)Sn為數(shù)列{(-1)nan}的前n項(xiàng)和,則S2016=( 。
A.2016B.-2016C.3024D.-3024

查看答案和解析>>

同步練習(xí)冊(cè)答案