分析 (1)由直線l的傾斜角α=$\frac{3π}{4}$,可得直線l的極角θ=$\frac{3π}{4}$,或θ=$\frac{7π}{4}$.代入圓E的極坐標方程即可得出.
(2)由(1)可得:線段OA的中點M$(\sqrt{2},\frac{3π}{4})$,可得直角坐標M.又圓E的極坐標方程為ρ=4sinθ,即ρ2=4ρsinθ,把ρ2=x2+y2,y=ρsinθ代入可得直角坐標方程,設直線l的參數(shù)方向為:$\left\{\begin{array}{l}{x=-1+tcosα}\\{y=1+tsinα}\end{array}\right.$(t為參數(shù)),代入圓的方程可得關于t的一元二次方程,利用|MB|•|MC|=|t1|•|t2|=|t1•t2|即可證明.
解答 解:(1)∵直線l的傾斜角α=$\frac{3π}{4}$,
∴直線l的極角θ=$\frac{3π}{4}$,或θ=$\frac{7π}{4}$.代入圓E的極坐標方程ρ=4sinθ
可得:$ρ=2\sqrt{2}$或ρ=-2$\sqrt{2}$(舍去).
∴l(xiāng)與圓E的交點A的極坐標為$(2\sqrt{2},\frac{3π}{4})$.
(2)由(1)可得:線段OA的中點M$(\sqrt{2},\frac{3π}{4})$,可得直角坐標M(-1,1).
又圓E的極坐標方程為ρ=4sinθ,即ρ2=4ρsinθ,可得直角坐標方程:x2+y2-4y=0,
設直線l的參數(shù)方向為:$\left\{\begin{array}{l}{x=-1+tcosα}\\{y=1+tsinα}\end{array}\right.$(t為參數(shù)),
代入圓的方程可得:t2-2t(sinα+cosα)-2=0,△>0,
∴t1t2=-2.
∴|MB|•|MC|=|t1|•|t2|=|t1•t2|=2,為定值.
點評 本題考查了極坐標化為直角坐標、三角函數(shù)求值、中點坐標公式、一元二次方程的根與系數(shù)的關系,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\overrightarrow{OA}$,$\overrightarrow{BC}$ | B. | $\overrightarrow{OA}$,$\overrightarrow{CD}$ | C. | $\overrightarrow{AB}$,$\overrightarrow{CF}$ | D. | $\overrightarrow{AB}$,$\overrightarrow{DE}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com