分析 (1)根據(jù)數(shù)列的遞推公式即可求出數(shù)列{an}為等比數(shù)列,根據(jù)對(duì)數(shù)的運(yùn)算性質(zhì)可得bn=2n+1,
(2)根據(jù)裂項(xiàng)求和即可得到答案.
解答 解:(1)在${a_n}=\frac{3}{4}{S_n}+2$中令n=1得a1=8,
因?yàn)閷?duì)任意正整數(shù)n,都有${a_n}=\frac{3}{4}{S_n}+2$成立,所以${a_{n+1}}=\frac{3}{4}{S_{n+1}}+2$,
兩式相減得an+1-an=$\frac{3}{4}$an+1,
所以an+1=4an,
又a1≠0,
所以數(shù)列{an}為等比數(shù)列,
所以an=8•4n-1=22n+1,
所以bn=log2an=2n+1,
(2)cn=$\frac{1}{{{b_n}{b_{n+1}}}}$=$\frac{1}{(2n+1)(2n+3)}$=$\frac{1}{2}$($\frac{1}{2n+1}$-$\frac{1}{2n+3}$)
所以${T_n}=\frac{1}{2}[{({\frac{1}{3}-\frac{1}{5}})+({\frac{1}{5}-\frac{1}{7}})+…+({\frac{1}{2n+1}-\frac{1}{2n+3}})}]=\frac{1}{2}({\frac{1}{3}-\frac{1}{2n+3}})=\frac{n}{{3({2n+3})}}$
點(diǎn)評(píng) 本題考查了根據(jù)數(shù)列的遞推公式求通項(xiàng)公式和裂項(xiàng)求和,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ($\frac{2}{3}$,+∞) | B. | (1,+∞) | C. | ($\frac{1}{3}$,+∞) | D. | (-$\frac{1}{3}$,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 3 | B. | 4 | C. | 5 | D. | 6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{2}{3}$ | B. | $\frac{4}{3}$ | C. | $\frac{3}{2}$ | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com