【題目】已知直線及點.

(1)求經(jīng)過點,且與直線平行的直線方程;

(2)求經(jīng)過點,且傾斜角為直線的傾斜角的倍的直線方程.

【答案】(1)(2)

【解析】分析:(1)根據(jù)平行關(guān)系求出直線的斜率,利用點斜式求出方程即可;

(2)利用二倍角正切公式求出直線的斜率,利用點斜式求出方程即可.

詳解:(答案一)解:(1)設(shè)直線的斜率為,則

因為所求直線與平行,所以所求直線的斜率,

又所求直線經(jīng)過點,所以所求直線方程為

(2)依題意,所求直線的斜率

又所求直線經(jīng)過點,所以所求直線方程為

(答案二)解:(1)設(shè)直線的斜率為,則

因為所求直線與平行,所以所求直線的斜率,

又所求直線經(jīng)過點,所以所求直線方程為,即

(2)依題意,所求直線的斜率

又所求直線經(jīng)過點,所以所求直線方程為,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的中心在原點,焦點在軸上,離心率為,若拋物線的焦點與橢圓的一個焦點重合.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)過橢圓的左焦點,且斜率為的直線交橢圓于, 兩點,求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的首項,項和為,.

(1)求數(shù)列的通項公式;

(2)設(shè),求數(shù)列的前n項和Tn,并證明:1≤Tn<.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)數(shù)列{an}的前n項和為Sn,點 (n∈N*)均在函數(shù)y=3x-2的圖象上.

(1)求數(shù)列{an}的通項公式;

(2)設(shè)bnTn是數(shù)列{bn}的前n項和,求使得Tn<對所有n∈N*都成立的最小正整數(shù)m.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】閱讀如下程序框圖,如果輸出i=5,那么在空白矩形框中應(yīng)填入的語句為(

A.S=2*i﹣2
B.S=2*i﹣1
C.S=2*I
D.S=2*i+4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《張丘建算經(jīng)》是我國南北朝時期的一部重要數(shù)學(xué)著作,書中系統(tǒng)的介紹了等差數(shù)列,同類結(jié)果在三百多年后的印度才首次出現(xiàn).書中有這樣一個問題,大意為:某女子善于織布,后一天比前一天織的快,而且每天增加的數(shù)量相同,已知第一天織布5尺,一個月(按30天計算)總共織布390尺,問每天增加的數(shù)量為多少尺?該問題的答案為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(題文)平面內(nèi)動點到兩定點,距離之比為常數(shù),則動點的軌跡叫做阿波羅尼斯圓.現(xiàn)已知定點,圓心為,

(1)求滿足上述定義的圓的方程,并指出圓心的坐標(biāo)和半徑;

(2)若,且經(jīng)過點的直線交圓兩點,當(dāng)的面積最大時,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】目前北方空氣污染越來越嚴(yán)重,某大學(xué)組織學(xué)生參加環(huán)保知識競賽,從參加學(xué)生中抽取40名,將其成績(均為整數(shù))整理后畫出的頻率分布直方圖如圖,若從成績是80分以上(包括80分)的學(xué)生中選兩人,則他們在同一分?jǐn)?shù)段的概率為_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓的焦點在軸上,離心率為,拋物線的焦點在軸上, 的中心和的頂點均為原點,點上,點上,

(1)求曲線 的標(biāo)準(zhǔn)方程;

(2)請問是否存在過拋物線的焦點的直線與橢圓交于不同兩點,使得以線段為直徑的圓過原點?若存在,求出直線的方程;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案