已知直線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,圓的極坐標(biāo)方程為.求:
(1)求圓的直角坐標(biāo)方程;
(2)若是直線與圓面的公共點(diǎn),求的取值范圍.

(1).(2).

解析試題分析:(1)先將利用兩角差的正弦公式展開,方程兩邊在乘以,利用直角坐標(biāo)與極坐標(biāo)互化公式即可將極坐標(biāo)方程互為直角坐標(biāo)方程;(2)先將直線方程化為普通方程互化,求出直線與圓的交點(diǎn)A、B坐標(biāo),作出直線=0,平移直線,結(jié)合圖形,找出直線z=與線段AB相交時,z取最大值與最小值點(diǎn),求出z的最大值與最小值,即可求出的取值范圍.
試題解析:(1)因為圓的極坐標(biāo)方程為
所以

所以
所以圓的直角坐標(biāo)方程為:.  6分
(2)『解法1』:
設(shè)
由圓的方程
所以圓的圓心是,半徑是
代入            
又直線,圓的半徑是,由題意有:
所以
的取值范圍是.                    14分
『解法2』:
直線的參數(shù)方程化成普通方程為:           

解得,            
是直線與圓面的公共點(diǎn),
∴點(diǎn)在線段上,
的最大值是,
最小值是
的取值范圍是.        14分
考點(diǎn):極坐標(biāo)方程與直角坐標(biāo)方程互化;參數(shù)方程與普通方程互化互化;直線與圓的位置關(guān)系;數(shù)形結(jié)合想

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

圓C的極坐標(biāo)方程化為直角坐標(biāo)方程為           ,該圓的面積為       

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知圓的極坐標(biāo)方程為:.
(1)將極坐標(biāo)方程化為普通方程;
(2)若點(diǎn)在該圓上,求的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

直角坐標(biāo)系xOy中,以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的方程為,直線方程為(t為參數(shù)),直線與C的公共點(diǎn)為T.
(1)求點(diǎn)T的極坐標(biāo);
(2)過點(diǎn)T作直線,被曲線C截得的線段長為2,求直線的極坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

將圓上每一點(diǎn)的橫坐標(biāo)保持不變,縱坐標(biāo)變?yōu)樵瓉淼?倍,得曲線C.
(1)寫出C的參數(shù)方程;
(2)設(shè)直線與C的交點(diǎn)為,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極坐標(biāo)建立極坐標(biāo)系,求過線段的中點(diǎn)且與垂直的直線的極坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知曲線的極坐標(biāo)方程是,以極點(diǎn)為原點(diǎn),極軸為軸正半軸,建立平面直角坐標(biāo)系,兩坐標(biāo)系中取相同的長度單位.
(1)寫出曲線的普通方程,并說明它表示什么曲線;
(2)過點(diǎn)作傾斜角為的直線與曲線相交于兩點(diǎn),求線段的長度和的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知在平面直角坐標(biāo)系中,圓的方程為.以原點(diǎn)為極點(diǎn),以軸正半軸為極軸,且與直角坐標(biāo)系取相同的單位長度,建立極坐標(biāo)系,直線的極坐標(biāo)方程為
(1)求直線的直角坐標(biāo)方程和圓的參數(shù)方程;
(2)求圓上的點(diǎn)到直線的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,兩種坐標(biāo)系取相同單位長度.已知曲線過點(diǎn)的直線的參數(shù)方程為(t為參數(shù)). (1)求曲線C與直線 的普通方程;(2)設(shè)曲線C經(jīng)過伸縮變換得到曲線,若直線 與曲線相切,求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

在極坐標(biāo)系中,過點(diǎn)作圓的切線,則切線的極坐標(biāo)方程是              

查看答案和解析>>

同步練習(xí)冊答案