18.已知0<α<$\frac{π}{2}$,-$\frac{π}{2}$<β<0,cos(α-β)=-$\frac{5}{13}$,sinα=$\frac{4}{5}$,則sinβ的值為-$\frac{56}{65}$.

分析 根據(jù)所給的角的范圍和角的函數(shù)值,利用同角的三角函數(shù)之間的關(guān)系,寫出角的函數(shù)值,進(jìn)行角的變換,用α-(α-β)代替α,用兩角差的正弦公式求出結(jié)果.

解答 解:∵0<α<$\frac{π}{2}$,-$\frac{π}{2}$<β<0,
∴0<α-β<π,
∵cos(α-β)=-$\frac{5}{13}$,sinα=$\frac{4}{5}$,
∴sin(α-β)=$\frac{12}{13}$,cosα=$\frac{3}{5}$,
∴sinβ=sin[α-(α-β)]=sinαcos(α-β)-cosαsin(α-β)=$\frac{4}{5}$×(-$\frac{5}{13}$)-$\frac{3}{5}$×$\frac{12}{13}$=-$\frac{56}{65}$,
故答案為:$-\frac{56}{65}$

點(diǎn)評(píng) 本題考查兩角差的正弦公式,在解題過(guò)程中關(guān)鍵是根據(jù)所給的角的范圍求出要用的函數(shù)值,本題是一個(gè)角的變換問(wèn)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.函數(shù)$y={log_{\frac{1}{3}}}({sinx-cosx})$的單調(diào)遞增區(qū)間是(2kπ+$\frac{3π}{4}$,2kπ+$\frac{5π}{4}$),k∈Z.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知函數(shù)$f(x)=lg({\sqrt{1+4{x^2}}-2x})+1$,則$f({lg2})+f({lg\frac{1}{2}})$=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知函數(shù)$f(x)={log_a}({x^2}-1)(a>0\;,\;\;且a≠1)$
(1)求函數(shù)的定義域;
(2)判斷并證明y=f(x)的奇偶性;
(3)令$g(x)=f(\sqrt{x})$,求滿足不等式g(2a)>g(a+3)的a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.若函數(shù)$f(x)={2^x}+\frac{m}{2^x}$為偶函數(shù),則實(shí)數(shù)m=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.若實(shí)數(shù)x,y滿足條件$\left\{\begin{array}{l}x≥0\\ y≥0\\ 3x+2y-5≤0\\ x+y≤2.\end{array}\right.$則z=5x+4y的最大值為9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知直線2x+(t-2)y+3-2t=0,分別根據(jù)下列條件,求t的值:
(1)過(guò)點(diǎn)(1,1);
(2)直線在y軸上的截距為-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.過(guò)拋物線y2=4x的焦點(diǎn)且傾斜角為30°的直線交拋物線于A,B兩點(diǎn),則|AB|=16.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.設(shè)向量$\overrightarrow{a}$=(1,x),$\overrightarrow$=(x,1),若$\overrightarrow{a}$•$\overrightarrow$=-|$\overrightarrow{a}$|•|$\overrightarrow$|,則x=-1.

查看答案和解析>>

同步練習(xí)冊(cè)答案