【題目】為貫徹落實健康第一的指導(dǎo)思想,切實加強(qiáng)學(xué)校體育工作,促進(jìn)學(xué)生積極參加體育鍛煉,養(yǎng)成良好的鍛煉習(xí)慣,提高體質(zhì)健康水平.某市抽調(diào)三所中學(xué)進(jìn)行中學(xué)生體育達(dá)標(biāo)測試,現(xiàn)簡稱為校、校、.現(xiàn)對本次測試進(jìn)行調(diào)查統(tǒng)計,得到測試成績排在前200名學(xué)生層次分布的餅狀圖、校前200名學(xué)生的分布條形圖,則下列結(jié)論不一定正確的是(

A.測試成績前200名學(xué)生中校人數(shù)超過校人數(shù)的2

B.測試成績前100名學(xué)生中校人數(shù)超過一半以上

C.測試成績前151—200名學(xué)生中校人數(shù)最多33

D.測試成績前51—100名學(xué)生中校人數(shù)多于校人數(shù)

【答案】D

【解析】

直接計算判定選項A、B一定正確;計算前1—150名學(xué)生中校人數(shù)和校最多可能的人數(shù),得到校最少可能的人數(shù),得前151—200名學(xué)生中校人數(shù)最多可能值,判定選項C一定正確;考慮到這200名學(xué)生中校學(xué)生總數(shù)為68人,至多有可能會有25人在151200名之間,可以判定選項D不一定正確.

200名學(xué)生中校人數(shù)人,校人數(shù)人,,故A一定正確;

100名學(xué)生中校人數(shù)約為人,超過半數(shù)的50人,故B一定正確;

成績前150名以內(nèi)的學(xué)生中校人數(shù)約為人,校人數(shù)最多全在這個范圍,有,所以校至少有人,又∵成績前200名學(xué)生中校人數(shù)為40人,所以校至多有=33人測試成績前151—200名之間,故C一定正確;

測試成績前51—100名學(xué)生中校人數(shù)約為25人,這200名學(xué)生中校學(xué)生總數(shù)為人,有可能也有25人在51100名之間,故D不一定正確,

故選:D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于定義在上的函數(shù),若存在,使恒成立,則稱為“型函數(shù)”;若存在,使恒成立,則稱為“型函數(shù)”.已知函數(shù).

1)設(shè)函數(shù).,且為“型函數(shù)”,求的取值范圍;

2)設(shè)函數(shù).證明:當(dāng),為“1)型函數(shù)”;

3)若,證明存在唯一整數(shù),使得為“型函數(shù)”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將函數(shù)的圖像向左平移個單位后得到函數(shù)的圖像,且函數(shù)滿足,則下列命題中正確的是()

A. 函數(shù)圖像的兩條相鄰對稱軸之間的距離為

B. 函數(shù)圖像關(guān)于點對稱

C. 函數(shù)圖像關(guān)于直線對稱

D. 函數(shù)在區(qū)間內(nèi)為單調(diào)遞減函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ln (x+1)-x,a∈R.

(1)當(dāng)a>0時,求函數(shù)f(x)的單調(diào)區(qū)間;

(2)若存在x>0,使f(x)+x+1<- (a∈Z)成立,求a的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),的導(dǎo)函數(shù).若的零點均在集合中,則

A.上單調(diào)遞增B.上單調(diào)遞增

C.極小值為D.最大值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面為直角梯形,,,平面底面,的中點,是棱上的點,,,.

1)若的中點,求證:;

2)若二面角,設(shè),試確定的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中是大于的常數(shù).

1求函數(shù)的定義域;

2當(dāng)時, 求函數(shù)上的最小值;

3若對任意恒有,試確定的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】第十一屆全國少數(shù)民族傳統(tǒng)體育運(yùn)動會在河南鄭州舉行,某項目比賽期間需要安排3名志愿者完成5項工作,每人至少完成一項,每項工作由一人完成,則不同的安排方式共有多少種

A.60B.90C.120D.150

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)判斷函數(shù)的單調(diào)性;

(Ⅱ)求證: .

查看答案和解析>>

同步練習(xí)冊答案