13.各項(xiàng)均為正數(shù)的等差數(shù)列{an}中,2a6+2a8=a72,則a7=( 。
A.2B.4C.16D.0

分析 利用等差數(shù)列的性質(zhì)即可得出.

解答 解:由等差性質(zhì)有a6+a8=2a7,2a6+2a8=a72,
∴4a7=${a}_{7}^{2}$,a7>0,
解得a7=4.
故選:B.

點(diǎn)評(píng) 本題考查了等差數(shù)列的性質(zhì)、方程的解法,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.運(yùn)行如圖所示的程序框圖,輸出的S=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1的漸近線方程為y=±$\frac{1}{2}$x,則雙曲線的離心率為(  )
A.$\frac{3}{4}$B.$\frac{\sqrt{3}}{2}$C.$\frac{5}{4}$D.$\frac{\sqrt{5}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知正數(shù)組成的等比數(shù)列{an},若a2•a19=100,那么a8+a13的最小值為( 。
A.20B.25C.50D.不存在

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.如圖,給出的是計(jì)算1+$\frac{1}{3}$+$\frac{1}{5}$+…+$\frac{1}{99}$+$\frac{1}{101}$的值的一個(gè)程序框圖,判斷框內(nèi)應(yīng)填入的條件是(  )
A.i<101?B.i>101?C.i≤101?D.i≥101?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.?dāng)?shù)列{an}滿足a1=1,an•an-1+2an-an-1=0(n≥2),則使得ak>$\frac{1}{2016}$的最大正整數(shù)k為( 。
A.5B.7C.8D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知等比數(shù)列{an}滿足an+1+an=10•4n-1(n∈N*),數(shù)列{bn}的前n項(xiàng)和為Sn,且bn=log2an
(I)求bn,Sn;
(Ⅱ)設(shè)${c_n}={b_n}•({\frac{{2{S_n}}}{n}+1})$,求數(shù)列$\left\{{{a_n}+\frac{1}{c_n}}\right\}$的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.在四棱錐P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,AD=2AB,E,F(xiàn)是線段BC,AB的中點(diǎn).
(Ⅰ)證明:ED⊥PE;
(Ⅱ)在線段PA上確定點(diǎn)G,使得FG∥平面PED,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{3}}{2}$,且與y軸正半軸的交點(diǎn)為(0,1)
(Ⅰ)求橢圓的方程;
(Ⅱ)若直線l與C交于A、B兩點(diǎn),AB=2,求△AOB的面積的最大值.

查看答案和解析>>

同步練習(xí)冊答案