1.已知全集U=R,集合A={x|x<-2或x>2},則∁UA=(  )
A.(-2,2)B.(-∞,-2)∪(2,+∞)C.[-2,2]D.(-∞,-2]∪[2,+∞)

分析 根據(jù)已知中集合A和U,結(jié)合補(bǔ)集的定義,可得答案.

解答 解:∵集合A={x|x<-2或x>2}=(-∞,-2)∪(2,+∞),全集U=R,
∴∁UA=[-2,2],
故選:C

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是集合的補(bǔ)集及其運(yùn)算,難度不大,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.如圖,四棱錐P-ABCD的底面為正方形,側(cè)面PAD⊥底面ABCD,PA⊥AD,E,F(xiàn),H分別為AB,PC,BC的中點(diǎn).
(Ⅰ)求證:EF∥平面PAD;
(Ⅱ)求證:平面PAH⊥平面DEF;
(Ⅲ)若二面角P-CD-B的平面角為45°,求PD與平面PAH所成的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知函數(shù)f(x)=sin2x-cos2x-2$\sqrt{3}$sinx cosx(x∈R).
(Ⅰ)求f($\frac{2π}{3}$)的值.
(Ⅱ)求f(x)的最小正周期及單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.從分別寫(xiě)有1,2,3,4,5的5張卡片中隨機(jī)抽取1張,放回后再隨機(jī)抽取1張,則抽得的第一張卡片上的數(shù)大于第二張卡片上的數(shù)的概率為( 。
A.$\frac{1}{10}$B.$\frac{1}{5}$C.$\frac{3}{10}$D.$\frac{2}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知a,b,c,d為實(shí)數(shù),且a2+b2=4,c2+d2=16,證明ac+bd≤8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.設(shè)$\overrightarrow{m}$,$\overrightarrow{n}$為非零向量,則“存在負(fù)數(shù)λ,使得$\overrightarrow{m}$=λ$\overrightarrow{n}$”是$\overrightarrow{m}$•$\overrightarrow{n}$<0”的( 。
A.充分而不必要條件B.必要而不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.已知向量$\overrightarrow{a}$=(-2,3),$\overrightarrow$=(3,m),且$\overrightarrow{a}⊥\overrightarrow$,則m=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.若i為虛數(shù)單位,則$\frac{{1+{i^{2017}}}}{{{{(1-i)}^2}}}$的虛部為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,已知sinB+sinA(sinC-cosC)=0,a=2,c=$\sqrt{2}$,則C=( 。
A.$\frac{π}{12}$B.$\frac{π}{6}$C.$\frac{π}{4}$D.$\frac{π}{3}$

查看答案和解析>>

同步練習(xí)冊(cè)答案