分析 (1)推導出CD⊥AC,AB⊥DC,從而AB⊥平面BCD,由此能證明AB⊥BD.
(2)由VC-ABD=VD-ABC,能求出點C到平面ABD的距離.
解答 證明:(1)在Rt△ABC中,∵AB=BC=CD=2,AD=2$\sqrt{3}$,∠ABC=90°
∴$AC=\sqrt{A{B}^{2}+B{C}^{2}}$=2$\sqrt{2}$,
∵AC2+CD2=AD2,∴CD⊥AC,
又平面DAC⊥平面ABC,∴DC⊥平面ABC,∴AB⊥DC,
又AB⊥BC,BC∩DC=C,
∴AB⊥平面BCD,
又BD?平面BCD,∴AB⊥BD.
解:(2)∵VC-ABD=VD-ABC,
設點C到平面ABD的距離為h,
∴$\frac{1}{3}h•{S}_{△ABD}=\frac{1}{3}CD•{S}_{△ABC}$,
∵${S}_{△ABD}=2\sqrt{2}$,S△ABC=2,
解得h=$\sqrt{2}$,
∴點C到平面ABD的距離為$\sqrt{2}$.
點評 本題考查線線垂直的證明,考查點到平面的距離的求法,是中檔題,解題時要認真審題,注意空間思維能力的培養(yǎng).
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-∞,4) | B. | (-4,4) | C. | (-4,4] | D. | [-4,+∞) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{7}{3}$ | B. | $\frac{15}{7}$ | C. | $\frac{17}{7}$ | D. | $\frac{8}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 3 | B. | $7+4\sqrt{3}$ | C. | $\frac{1}{3}$ | D. | $3+2\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com