【題目】如圖,四棱錐P-ABCD中,PA⊥底面ABCD , AD∥BC , AB=AD=AC=3,PA=BC=4,M為線段AD上一點,AM=2MD , N為PC的中點.
(1)證明MN∥平面PAB;
(2)求四面體N-BCM的體積.
【答案】
(1)證明:由已知得AM= AD=2,如圖,
取BP的中點T,連接AT,TN,由N為PC中點知TN∥BC,TN= BC=2.又AD∥BC,故 ,所以四邊形AMNT為平行四邊形,
于是MN∥AT.因為AT平面PAB,MN平面PAB,所以MN∥平面PAB
(2)解:因為PA⊥平面ABCD,N為PC的中點,所以N到平面ABCD的距離為 PA.
如圖,取BC的中點E,連接AE,由AB=AC=3得AE⊥BC,AE= = .
由AM∥BC得M到BC的距離為 ,故S△BCM= ×4× =2 ,
所以四面體N-BCM的體積VN-BCM= ×S△BCM× = .
【解析】1.本題考察直線與平面平行的判定及直線與平面平行的性質(zhì),由線線平行證線面平行。2.求四面體N-BCM的體積=底面積高,要想到“PA⊥平面ABCD”的作用,結(jié)合題目的已知即可解出。
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= ,
(1)若a=﹣1,求f(x)的單調(diào)區(qū)間;
(2)若f(x)有最大值3,求a的值.
(3)若f(x)的值域是(0,+∞),求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若過定點M(﹣1,0)且斜率為k的直線與圓x2+4x+y2﹣5=0在第一象限內(nèi)的部分有交點,則k的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓 =1(a>b>0)的離心率為 ,過焦點垂直長軸的弦長為3.
(1)求橢圓的標(biāo)準方程;
(2)過橢圓的右頂點作直線交拋物線y2=2x于A、B兩點,求證:OA⊥OB.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)=ax2+bx(a>0,b>0)在點(1,f(1))處的切線斜率為2,則 的最小值是( )
A.10
B.9
C.8
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)(x1 , y1),(x2 , y2),…,(xn , yn)是變量x和y的n個樣本點,直線l是由這些樣本點通過最小二乘法得到的線性回歸直線(如圖),以下結(jié)論中正確的是( )
A.x和y的相關(guān)系數(shù)在﹣1和0之間
B.x和y的相關(guān)系數(shù)為直線l的斜率
C.當(dāng)n為偶數(shù)時,分布在l兩側(cè)的樣本點的個數(shù)一定相同
D.所有樣本點(xi , yi)(i=1,2,…,n)都在直線l上
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為2a的正方形ABCD中,E,F(xiàn)分別為AB,BC的中點,沿圖中虛線將3個三角形折起,使點A,B,C重合,重合后記為點P.
問:
(1)折起后形成的幾何體是什么幾何體?
(2)這個幾何體共有幾個面,每個面的三角形有何特點?
(3)每個面的三角形面積為多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)列{an}滿足
(1)計算a1 , a2 , a3 , a4
(2)猜想an的表達式,并用數(shù)學(xué)歸納法證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知兩點F1(﹣2,0),F(xiàn)2(2,0),且|F1F2|是|PF1|與|PF2|的等差中項,則動點P的軌跡方程是( )
A. + =1
B. + =1
C. + =1
D. + =1
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com