【題目】已知函數(shù)f(x)= ,
(1)若a=﹣1,求f(x)的單調(diào)區(qū)間;
(2)若f(x)有最大值3,求a的值.
(3)若f(x)的值域是(0,+∞),求a的取值范圍.
【答案】
(1)解:當a=﹣1時,f(x)= ,
令g(x)=﹣x2﹣4x+3,
由于g(x)在(﹣∞,﹣2)上單調(diào)遞增,在(﹣2,+∞)上單調(diào)遞減,
而y= t在R上單調(diào)遞減,
所以f(x)在(﹣∞,﹣2)上單調(diào)遞減,在(﹣2,+∞)上 單調(diào)遞增,
即函數(shù)f( x)的遞增區(qū)間是(﹣2,+∞),遞減區(qū)間是(﹣∞,﹣2 ).
(2)解:令h(x)=ax2﹣4x+3,y= h(x),由于f(x)有最大值3,
所以 h(x)應有最小值﹣1,
因此 =﹣1,
解得a=1.
即當f(x)有最大值3時,a的值等于1.
(3)解:由指數(shù)函數(shù)的性質(zhì)知,
要使y=h(x)的值域為(0,+∞).
應使h(x)=ax2﹣4x+3的值域為R,
因此只能有a=0.
因為若a≠0,則h(x)為二次函數(shù),其值域不可能為R.
故 a的取值范圍是{0}.
【解析】(1)當a=1時,f(x)= ,根據(jù)復合函數(shù)的單調(diào)性(同增異減)即可判斷出f(x)的單調(diào)區(qū)間,(2)令h(x)=ax2﹣4x+3,y=,當f(x)有最大值3,則h(x)應有最小值﹣1,代入即可解得a=1,(3)根據(jù)指數(shù)函數(shù)的性質(zhì),若y=h(x)的值域為(0,+∞),則h(x)=ax2﹣4x+3的值域為R,分析討論即可得出a的取值范圍是{0}.
科目:高中數(shù)學 來源: 題型:
【題目】已知a,b,c分別是△ABC的角A,B,C所對的邊,且c=2,C= .
(1)若△ABC的面積等于 ,求a,b;
(2)若sinC+sin(B﹣A)=2sin2A,求A的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】游樂場推出了一項趣味活動,參加活動者需轉(zhuǎn)動如圖所示的轉(zhuǎn)盤兩次,每次轉(zhuǎn)動后,待轉(zhuǎn)盤停止轉(zhuǎn)動時,記錄指針所指區(qū)域中的數(shù),設(shè)兩次記錄的數(shù)分別為x,y,獎勵規(guī)則如下:
①若xy≤3,則獎勵玩具一個;②若xy≥8,則獎勵水杯一個;③其余情況獎勵飲料一瓶,假設(shè)轉(zhuǎn)盤質(zhì)地均勻,四個區(qū)域劃分均勻,小亮準備參加此項活動.
(Ⅰ)求小亮獲得玩具的概率;
(Ⅱ)請比較小亮獲得水杯與獲得飲料的概率的大小,并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}滿足a1=1,Sn=2n﹣an(n∈N*).
(1)計算a2 , a3 , a4 , 并由此猜想通項公式an;
(2)用數(shù)學歸納法證明(1)中的猜想.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)f(x)是定義在[﹣1,1]上的奇函數(shù),f(﹣1)=﹣1,且對任意a,b∈[﹣1,1],當a≠b時,都有 ;
(1)解不等式f ;
(2)若f(x)≤m2﹣2km+1對所有x∈[﹣1,1],k∈[﹣1,1]恒成立,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)函數(shù)f(x)=ax2+(b﹣1)x+3.
(1)若不等式f(x)>0的解為(﹣1, ),求不等式bx2﹣3x+a≤0的解集;
(2)若f(1)=4,a>0,b>0,求ab的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】請你設(shè)計一個包裝盒,如圖所示,ABCD是邊長為60cm的正方形硬紙片,切去陰影部分所示的四個全等的等腰直角三角形,再沿虛線折起,使得A,B,C,D四個點重合于圖中的點P,正好形成一個正四棱柱形狀的包裝盒,E、F在AB上,是被切去的等腰直角三角形斜邊的兩個端點,設(shè)AE=FB=x(cm).
(1)若廣告商要求包裝盒側(cè)面積S(cm2)最大,試問x應取何值?
(2)若廣告商要求包裝盒容積V(cm3)最大,試問x應取何值?并求出此時包裝盒的高與底面邊長的比值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐P-ABCD中,PA⊥底面ABCD , AD∥BC , AB=AD=AC=3,PA=BC=4,M為線段AD上一點,AM=2MD , N為PC的中點.
(1)證明MN∥平面PAB;
(2)求四面體N-BCM的體積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com