【題目】已知橢圓 =1(a>b>0)的離心率為 ,過焦點(diǎn)垂直長軸的弦長為3.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過橢圓的右頂點(diǎn)作直線交拋物線y2=2x于A、B兩點(diǎn),求證:OA⊥OB.
【答案】
(1)解:橢圓 =1(a>b>0)的離心率為 ,過焦點(diǎn)垂直長軸的弦長為3,
則有 ,
解可得a=2,c=1,則b2=a2﹣c2=3.
所以,所求橢圓的標(biāo)準(zhǔn)方程為
(2)解:證明:設(shè)過橢圓的右頂點(diǎn)(2,0)的直線AB的方程為x=my+2.
代入拋物線方程y2=2x,得y2﹣2my﹣4=0.
設(shè)A(x1,y1)、B(x2,y2),
則 ,
∴x1x2+y1y2=(my1+2)(my2+2)+y1y2=(1+m2)y1y2+2m(y1+y2)+4=0.
∴OA⊥OB
【解析】(1)根據(jù)題意,分析可得 ,解可得a、c的值,由橢圓的定義可得b的值,將a、b的值代入橢圓方程即可得答案;(2)設(shè)過橢圓的右頂點(diǎn)(2,0)的直線AB的方程為x=my+2,與拋物線方程聯(lián)立,設(shè)出A、B點(diǎn)的坐標(biāo),由根與系數(shù)的關(guān)系的關(guān)系分析計算x1x2+y1y2的值,由向量數(shù)量積的性質(zhì)可得證明.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】游樂場推出了一項趣味活動,參加活動者需轉(zhuǎn)動如圖所示的轉(zhuǎn)盤兩次,每次轉(zhuǎn)動后,待轉(zhuǎn)盤停止轉(zhuǎn)動時,記錄指針?biāo)竻^(qū)域中的數(shù),設(shè)兩次記錄的數(shù)分別為x,y,獎勵規(guī)則如下:
①若xy≤3,則獎勵玩具一個;②若xy≥8,則獎勵水杯一個;③其余情況獎勵飲料一瓶,假設(shè)轉(zhuǎn)盤質(zhì)地均勻,四個區(qū)域劃分均勻,小亮準(zhǔn)備參加此項活動.
(Ⅰ)求小亮獲得玩具的概率;
(Ⅱ)請比較小亮獲得水杯與獲得飲料的概率的大小,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】請你設(shè)計一個包裝盒,如圖所示,ABCD是邊長為60cm的正方形硬紙片,切去陰影部分所示的四個全等的等腰直角三角形,再沿虛線折起,使得A,B,C,D四個點(diǎn)重合于圖中的點(diǎn)P,正好形成一個正四棱柱形狀的包裝盒,E、F在AB上,是被切去的等腰直角三角形斜邊的兩個端點(diǎn),設(shè)AE=FB=x(cm).
(1)若廣告商要求包裝盒側(cè)面積S(cm2)最大,試問x應(yīng)取何值?
(2)若廣告商要求包裝盒容積V(cm3)最大,試問x應(yīng)取何值?并求出此時包裝盒的高與底面邊長的比值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐S﹣ABC中,M、N分別是棱SC、BC的中點(diǎn),且MN⊥AM,若AB=2 ,則此正三棱錐外接球的體積是( )
A.12π
B.4 π
C. π
D.12 π
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,A、B、C是三角形的三內(nèi)角,a、b、c是三內(nèi)角對應(yīng)的三邊,已知b2 , a2 , c2成等差數(shù)列.
(1)求cosA的最小值;
(2)若a=2,當(dāng)A最大時,△ABC面積的最大值?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(x)、g(x)分別是定義在R上的奇函數(shù)和偶函數(shù),當(dāng)x<0時,f′(x)g(x)+f(x)g′(x)>0,且g(﹣3)=0,則不等式f(x)g(x)<0的解集是( )
A.(﹣3,0)∪(3,+∞)
B.(﹣3,0)∪(0,3)
C.(﹣∞,﹣3)∪(3,+∞)
D.(﹣∞,﹣3)∪(0,3)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐P-ABCD中,PA⊥底面ABCD , AD∥BC , AB=AD=AC=3,PA=BC=4,M為線段AD上一點(diǎn),AM=2MD , N為PC的中點(diǎn).
(1)證明MN∥平面PAB;
(2)求四面體N-BCM的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四邊形ABCD和BCEG均為直角梯形,AD∥BC,CE∥BG,且∠BCD=∠BCE= ,平面ABCD⊥平面BCEG,BC=CD=CE=2AD=2BG=2.
(1)證明:AG∥平面BDE.
(2)求平面BDE和平面ADE所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下面給出了四個類比推理: ①由“若a,b,c∈R則(ab)c=a(bc)”類比推出“若a,b,c為三個向量則( ) = ( )”;
②“a,b為實(shí)數(shù),若a2+b2=0則a=b=0”類比推出“z1 , z2為復(fù)數(shù),若 ”;
③“在平面內(nèi),三角形的兩邊之和大于第三邊”類比推出“在空間中,四面體的任意三個面的面積之和大于第四個面的面積”;
④“在平面內(nèi),過不在同一條直線上的三個點(diǎn)有且只有一個圓”類比推出“在空間中,過不在同一個平面上的四個點(diǎn)有且只有一個球”.
上述四個推理中,結(jié)論正確的個數(shù)有( )
A.1個
B.2個
C.3個
D.4個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com