設(shè)函數(shù)y=loga|x|在(-∞,0)上單調(diào)遞增,則f(a+1)與f(a)的大小關(guān)系是
 
考點(diǎn):對數(shù)函數(shù)的圖像與性質(zhì)
專題:計(jì)算題,函數(shù)的性質(zhì)及應(yīng)用
分析:由復(fù)合函數(shù)的單調(diào)性可知0<a<1;從而由對數(shù)函數(shù)的單調(diào)性判斷.
解答: 解:∵函數(shù)y=loga|x|在(-∞,0)上單調(diào)遞增,
又∵y=|x|在(-∞,0)上單調(diào)遞減,
∴0<a<1;
而f(a+1)=loga(a+1)<0,f(a)=logaa=1;
故f(a+1)<f(a);
故答案為:f(a+1)<f(a).
點(diǎn)評:本題考查了對數(shù)函數(shù)的單調(diào)性的應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(Ⅰ)已知x∈R,a=x2+
1
2
,b=2-x,c=x2
-x+1,試證明a,b,c中至少有一個不小于1.
(Ⅱ)用分析法證明:若a>0,則
a2+
1
a2
+2≥a+
1
a
+
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若過定點(diǎn)M(-1,0)且斜率為k的直線與曲線y=
9-(x+2)2
(0<x<1)有交點(diǎn),則k的取值范圍是( 。
A、(0,
5
B、(-
5
,0)
C、(0,
13
D、(0,5)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an},{bn}滿足:a1=2,an+1=
1
2
(an+
1
an
).bn=
an+1
an-1
,則數(shù)列{bn}的通項(xiàng)公式為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是奇函數(shù),且當(dāng)x<0時,f(x)=ln
1
1-x
,則函數(shù)f(x)的大致圖象為(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x+
1+2x

(1)求函數(shù)f(x)的定義域;
(2)求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)
a
,
b
是不共線的兩個非零向量,記
OM
=ma,
ON
=nb,
OP
=αa+βb,其中m,n,α,β均為實(shí)數(shù),m≠0,n≠0,若M、P、N三點(diǎn)共線,則
α
m
+
β
n
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某學(xué)校安排甲、乙、丙、丁四位同學(xué)參加數(shù)學(xué)、物理、化學(xué)競賽,要求每位同學(xué)僅報(bào)一科,每科至少有一位同學(xué)參加,且甲、乙不能參加同一學(xué)科,則不同的安排方法有( 。
A、36種B、30種
C、24種D、6種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知fx)=-x2+6xcosα-16cosβ,若對任意實(shí)數(shù)t,均有f(3-cost)≥0,f(1+2-|t|)≤0恒成立.
(1)求證:f(4)≥0,f(2)=0;
(2)求函數(shù)f(x)的表達(dá)式.

查看答案和解析>>

同步練習(xí)冊答案