計算:
1-tan15°
3
+tan60°tan15°
=
 
考點:兩角和與差的正切函數(shù),三角函數(shù)的化簡求值
專題:三角函數(shù)的求值
分析:直接利用特殊角的三角函數(shù)以及兩角和的正切函數(shù)化簡求值即可.
解答: 解:
1-tan15°
3
+tan60°tan15°
=
tan45°-tan15°
3
(1+tan45°tan15°)
=
tan30°
3
=
3
3
3
=
1
3

故答案為:
1
3
點評:本題考查兩角和的正切函數(shù)以及特殊角的三角函數(shù)的化簡求值,考查公式的靈活應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若等差數(shù)列{an}滿足a12+a102=10,則S=a10+a11+…+a19的最大值為(  )
A、60B、50C、45D、40

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題中,真命題是(  )
A、x若,y∈R 且x+y>2  則x,y至少有一個大于1
B、?x∈R,2x>x2
C、a+b=0的充要條件是
a
b
=-1
D、?x0∈R,e x0≤0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合M={1,2,3,4},集合N={3,4,6},全集U={1,2,3,4,5,6},則集合M∩(∁UN)=( 。
A、{1}
B、{1,2}
C、{3,4}
D、{1,2,4,5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知在正方體ABCD-A1B1C1D1中,l?平面A1B1C1D1,且l與B1C1不平行,則下列一定不可能的是( 。
A、l與AD平行
B、l與AB異面
C、l與CD所成角為30°
D、l與BD垂直

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

以橢圓
x2
25
+
y2
16
=1的焦點為頂點,離心率為2的雙曲線方程(  )
A、
x2
16
-
y2
48
=1
B、
x2
9
-
y2
27
=1
C、
x2
16
-
y2
48
=1或
x2
9
-
y2
27
=1
D、以上都不對

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)一個球的表面積為S1,它的內(nèi)接正方體的表面積為S2,則
S1
S2
的值等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求φ使函數(shù)y=
3
cos(3x-φ)-sin(3x-φ)是奇函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的右頂點為A,點B,C都在雙曲線的右支上,若△ABC為等邊三角形,求雙曲線的離心率的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案