【題目】已知雙曲線方程為.
(1)已知直線與雙曲線交于不同的兩點(diǎn),且線段的中點(diǎn)在圓上,求的值;
(2)設(shè)直線是圓上動點(diǎn)處的切線,與雙曲線交于不同的兩點(diǎn),證明的大小為定值.
【答案】(1).(2)證明見解析
【解析】
(1)將直線方程與雙曲線方程聯(lián)立,利用一元二次方程根與系數(shù)的關(guān)系、中點(diǎn)坐標(biāo)公式,結(jié)合題意進(jìn)行求解即可;
(2)先求出直線的方程,與雙曲線聯(lián)立,利用一元二次方程根與系數(shù)關(guān)系,結(jié)合平面向量夾角公式進(jìn)行證明即可.
(1)設(shè)兩點(diǎn)的坐標(biāo)分別為,線段的中點(diǎn)為,由得,,
.
點(diǎn)在圓上,
(2)點(diǎn)在圓上,所以有,
因?yàn)?/span>,所以設(shè)過與該圓相切的直線的斜率為,
因此有 ,所以切線方程為:,
化簡,得.由及,得.∵切線與雙曲線交于不同的兩點(diǎn),且,且.設(shè)兩點(diǎn)的坐標(biāo)分別為,則.,且的大小為90°.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線與坐標(biāo)軸的交點(diǎn)都在圓C上.
(1)求圓C的方程;
(2)若圓C與直線交于A,B兩點(diǎn),且,求a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列的前項(xiàng)和為,且方程有一根為
(1)求、;
(2)求數(shù)列的通項(xiàng)公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某英語初學(xué)者在拼寫單詞“”時,對后三個字母的記憶有些模糊,他只記得由“”、“”、“”三個字母組成并且字母“”只可能在最后兩個位置中的某一個位置上如果該同學(xué)根據(jù)已有信息填入上述三個字母,那么他拼寫正確的概率為
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某高中志愿者部有男志愿者6人,女志愿者4人,這些人要參加元旦聯(lián)歡會的服務(wù)工作. 從這些人中隨機(jī)抽取4人負(fù)責(zé)舞臺服務(wù)工作,另外6人負(fù)責(zé)會場服務(wù)工作.
(Ⅰ)設(shè)為事件:“負(fù)責(zé)會場服務(wù)工作的志愿者中包含女志愿者但不包含男志愿者”,求事件發(fā)生的概率.
(Ⅱ)設(shè)表示參加舞臺服務(wù)工作的女志愿者人數(shù),求隨機(jī)變量的分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題中正確命題的個數(shù)是( )
①命題“函數(shù)的最小值不為”是假命題;
②“”是“”的必要不充分條件;③若為假命題,則, 均為假命題;
④若命題: , ,則: , ;
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)和圖象的對稱軸完全相同,若,則y=g(x)的值域是( 。
A. [-1,2] B. [-1,3] C. [,0,2] D. [0,,3]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某電器商場銷售的彩電、U盤和播放器三種產(chǎn)品.該商場的供貨渠道主要是甲、乙兩個品牌的二級代理商.今年9月份,該商場從每個代理商處各購得彩電100臺、U盤52個、播放器180臺.而10月份,該商場從每個代理商處購得的產(chǎn)品數(shù)量都是9月份的1.5倍.現(xiàn)知甲、乙兩個代理商給出的產(chǎn)品單價(元)如下頁表中所示:
彩電 | U盤 | 播放器 | |
甲代理商單價(元) | 2350 | 1200 | 750 |
乙代理商單價(元) | 2100 | 920 | 700 |
(1)計算,并指出結(jié)果的實(shí)際意義;
(2)用矩陣求該商場在這兩個月中分別支付給兩個代理商的購貨費(fèi)用.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com