(本小題滿分12分)
如圖:四棱錐P-ABCD中,底面ABCD是平行四邊形,∠ACB=90°,平面PAD⊥平面ABCD,PA=BC=1,PD=AB=,E、F分別為線段PD和BC的中點(diǎn).

(Ⅰ) 求證:CE∥平面PAF;
(Ⅱ) 在線段BC上是否存在一點(diǎn)G,使得平面PAG和平面PGC所成二面角的大小為60°?若存在,試確定G的位置;若不存在,請(qǐng)說(shuō)明理由.

(1)取PA中點(diǎn)為H,連結(jié)CE、HE、FH,證出HE∥AD,,
由ABCD是平行四邊形,且F為線段BC的中點(diǎn) 推出FC∥AD,,
從而進(jìn)一步得出CE∥平面PAF;
(2)線段BC上存在一點(diǎn)G,使得平面PAG和平面PGC所成二面角的大小為60°點(diǎn)G即為B點(diǎn)

解析試題分析:證明(1)取PA中點(diǎn)為H,連結(jié)CE、HE、FH,
因?yàn)镠、E分別為PA、PD的中點(diǎn),所以HE∥AD,,
因?yàn)锳BCD是平行四邊形,且F為線段BC的中點(diǎn)   所以FC∥AD,
所以HE∥FC, 四邊形FCEH是平行四邊形    所以EC∥HF
又因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/2a/4/12njs2.png" style="vertical-align:middle;" /> 
所以CE∥平面PAF        ……………4分
(2)因?yàn)樗倪呅蜛BCD為平行四邊形且∠ACB=90°,
所以CA⊥AD      又由平面PAD⊥平面ABCD可得
CA⊥平面PAD     所以CA⊥PA    
由PA=AD=1,PD=可知,PA⊥AD…………5分                   
所以可建立如圖所示的平面直角坐標(biāo)系A(chǔ)-xyz
因?yàn)镻A=BC=1,AB=所以AC=1         所以
假設(shè)BC上存在一點(diǎn)G,使得平面PAG和平面PGC所成二面角的大小為60°,
設(shè)點(diǎn)G的坐標(biāo)為(1,a,0),    所以
設(shè)平面PAG的法向量為
 所以

設(shè)平面PCG的法向量為
所以       ……………9分
因?yàn)槠矫鍼AG和平面PGC所成二面角的大小為60°,所以
所以所以                      ……………11分
所以線段BC上存在一點(diǎn)G,使得平面PAG和平面PGC所成二面角的大小為60°點(diǎn)G即為B點(diǎn)……12分
考點(diǎn):本題主要考查立體幾何中的平行關(guān)系、垂直關(guān)系,角的計(jì)算。
點(diǎn)評(píng):典型題,立體幾何題,是高考必考內(nèi)容,往往涉及垂直關(guān)系、平行關(guān)系、角、距離、體積的計(jì)算。在計(jì)算問(wèn)題中,有“幾何法”和“向量法”。利用幾何法,要遵循“一作、二證、三計(jì)算”的步驟。本題利用向量簡(jiǎn)化了證明過(guò)程。把證明問(wèn)題轉(zhuǎn)化成向量的坐標(biāo)運(yùn)算,這種方法帶有方向性。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題共12分)
在如圖的多面體中,⊥平面,,,,,   的中點(diǎn).

(Ⅰ)求證:平面;
(Ⅱ)求證:;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分13分)
如圖1,在等腰梯形中,,,上一點(diǎn), ,且.將梯形沿折成直二面角,如圖2所示.

(Ⅰ)求證:平面平面;
(Ⅱ)設(shè)點(diǎn)關(guān)于點(diǎn)的對(duì)稱(chēng)點(diǎn)為,點(diǎn)所在平面內(nèi),且直線與平面所成的角為,試求出點(diǎn)到點(diǎn)的最短距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,⊥平面,=90°,,點(diǎn)上,點(diǎn)E在BC上的射影為F,且

(1)求證:
(2)若二面角的大小為45°,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分13分)
如圖,在直三棱柱ABC-A1B1C1中,AC⊥BC,AC=CC1,M為AB的中點(diǎn)。

(Ⅰ)求證:BC1∥平面MA1C;
(Ⅱ)求證:AC1⊥平面A1BC。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題12分)在直三棱柱(側(cè)棱垂直底面)中,

(Ⅰ)若異面直線所成的角為,求棱柱的高;
(Ⅱ)設(shè)的中點(diǎn),與平面所成的角為,當(dāng)棱柱的高變化時(shí),求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在中,邊上的高,,沿翻折,使得,得到幾何體。

(1)求證:;
(2)求與平面所成角的正切值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分10分)
如圖所示是一個(gè)半圓柱與三棱柱的組合體,其中,圓柱的軸截面是邊長(zhǎng)為4的正方形,為等腰直角三角形,.

試在給出的坐標(biāo)紙上畫(huà)出此組合體的三視圖.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知梯形ABCD中,AD∥BC,∠ABC ="∠BAD" =,AB=BC=2AD=4,E、F分別是AB、CD上的點(diǎn),且EF∥BC。設(shè)AE =,G是BC的中點(diǎn).沿EF將梯形ABCD翻折,使平面AEFD⊥平面EBCF (如圖).

(1)當(dāng)=2時(shí),求證:BD⊥EG ;
(2)若以F、B、C、D為頂點(diǎn)的三棱錐的體積記為,求的最大值;
(3)當(dāng)取得最大值時(shí),求二面角D-BF-E的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案