20.設(shè)函數(shù)f(x)=log3(9x)•log3(3x),$\frac{1}{9}$≤x≤9,則f(x)的最小值為-$\frac{1}{4}$.

分析 f(x)=log3(9x)•log3(3x)=$(lo{g}_{3}x)^{2}+3lo{g}_{3}x+2$,令t=log3x,則-2≤t≤2,由此能求出函數(shù)f(x)的最小值.

解答 解:∵$\frac{1}{9}$≤x≤9,
∴f(x)=log3(9x)•log3(3x)
=(log3x+2)(log3x+1)
=$(lo{g}_{3}x)^{2}+3lo{g}_{3}x+2$,
令t=log3x,則-2≤t≤2,
∴g(t)=t2+3t+2,
當(dāng)=-$\frac{3}{2}$時,函數(shù)取得最小值-$\frac{1}{4}$.
故答案為:-$\frac{1}{4}$.

點評 本題考查函數(shù)的最小值的求法,是中檔題,解題時要認真審題,注意對數(shù)運算法則及換元法的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.設(shè)拋物線C:y2=4x的焦點為F,直線l過F且與C交于A、B兩點,若|AF|=3|BF|,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知當(dāng)x=3時,不等式loga(x2-x-2)<loga(3x+3)成立,那么這個不等式的解集是{x|2<x<5,x∈R}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知偶函數(shù)f(x)和奇函數(shù)g(x)的定義域都是(-4,4),它們在(-4,0]上的圖象分別是圖①和圖②,則關(guān)于x的不等式f(x)•g(x)<0的解集是(-2,0)∪(2,4).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.在△ABC中,角A,B,C的對邊分別是a,b,c,其面積為$\frac{3\sqrt{3}}{2}$,且c+2acosC=2b.
(1)求角A
(2)若a=$\sqrt{7}$,求b+c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.指出下列哪個不是算法( 。
A.解方程2x-6=0的過程是移項和系數(shù)化為1
B.從濟南到溫哥華要先乘火車到北京,再轉(zhuǎn)乘飛機
C.解方程2x2+x-1=0
D.利用公式S=πγ2計算半徑為3的圓的面積是計算π×32

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.求圓心在(a,$\frac{3π}{2}$),半徑為a的圓的極坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.公差為正數(shù)的等差數(shù)列{an}中,a1,a5,a6成等比數(shù)列.則使Sn取得最小值的n為(  )
A.5B.6C.7D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=$\frac{-{3}^{x}+a}{{3}^{x+1}+b}$.
(1)當(dāng)a=b=1時,求滿足f(x)=3x的x的取值;
(2)若函數(shù)f(x)是定義在R上的奇函數(shù)
①存在t∈R,不等式f(t2-2t)<f(2t2-k)有解,求k的取值范圍;
②若函數(shù)g(x)滿足f(x)•[g(x)+2]=$\frac{1}{3}$(3-x-3x),若對任意x∈R,不等式g(2x)≥m•g(x)-11恒成立,求實數(shù)m的最大值.

查看答案和解析>>

同步練習(xí)冊答案